期刊文献+

Cholesky分解的单Pass随机算法在秩亏最小二乘中的应用

The Application of Single-Pass Randomized Algorithm for Cholesky Decomposition in Rank Deficit Least Squares
原文传递
导出
摘要 通常针对大规模的对称半正定矩阵求解最小二乘问题时,往往得不到精确解,而传统的矩阵分解方法在规模增大的情况下大大地增加了求解时间和复杂度,Cholesky分解的单pass随机算法只需对输入矩阵访问一次,因此本文将Cholesky分解的单pass随机算法与两种常见的求解最小二乘问题的方法结合,提出了两种新的求解最小二乘问题的算法,并将两者进行了比较,最后通过数值实验证明了这两种算法的有效性及可行性。 Usually for large-scale symmetric semi-positive definite matrices to solve the least squares prob-lem,often do not get the exact solution,and the traditional matrix factorization method greatly increases the solution time and complexity in the case of increasing scale,the Cholesky decompo-sition of the single-pass randomized algorithm only needs to access the input matrix once,so this paper combines the single-pass random algorithm of Cholesky decomposition with two common methods to solve the least squares problem,proposes two new algorithms for solving the least squares problem,compares the two,and finally proves the effectiveness and feasibility of the two algorithms through numerical experiments.
作者 刘雪翠 Xuecui Liu(College of Science,University of Shanghai for Science and Technology,Shanghai)
出处 《运筹与模糊学》 2024年第3期781-785,共5页 Operations Research and Fuzziology
关键词 CHOLESKY分解 矩阵分解 单Pass随机算法 最小二乘 Cholesky Decomposition Matrix Factorization Single-Pass Randomized Algorithm Least Squares
  • 相关文献

参考文献1

二级参考文献8

  • 1GOLUB G H. VANLOAN C F. Matrix Computationsj M], Baltimore, Johns Hopkins University Press. 1996.
  • 2DRINEAS P. MAHONEY M W. MUTHUKRISHNAN S. et al. Faster least squares approximation[J]. Numerische Mathematik. 2011. 117(2), 219-249.
  • 3AVRON H. MAYMOUNKOV P. TOLEDO S. Blendenpik , Supercharging LAPACK's least-squares solver[J]. SIAM Journal on Scientific Computing. 2010. 32(3), 1217-1236.
  • 4ROKHLlN V. TYGERT M. A fast randomized algorithm for over determined linear least-squares regression [J]. Proceedings of the National Academy of Sciences. 2008. 105(36),13212-13217.
  • 5BOUTSIDlS C. DRINEAS P. Random projections for the nonnegative least.
  • 6NOCEDAL J. WRIGHT S J. Numerical Optimization [M]. New York, Springer. 2006.
  • 7胡善瑞,王明辉,田保光.一类矩阵方程最小二乘问题的LSQR方法[J].枣庄学院学报,2011,28(2):51-56. 被引量:1
  • 8贺红,马绍汉.随机算法的一般性原理[J].计算机科学,2002,29(1):90-92. 被引量:6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部