期刊文献+

正态混合样本总体试验设计研究

Study on General Experiment Design of Normal Mixed Samples
下载PDF
导出
摘要 针对正态分布类试验,从参数的估计量概率分布比对出发,采用直接推导或大规模仿真计算概率分布曲线的方法,形成正态混合样本总体试验质量评价方法。计算表明,以均值估计为目的的正态分布类试验,其样本设计与试验样本总体是否满足同一分布无关;以方差估计为目的的正态分布类试验,其样本设计与样本总体是否满足同一分布有关,并存在样本损失。 For the type of test of Normal distribution,based on the probability distribution comparison of the parameter estimators,the method of calculating the probability distribution curve by direct derivation or large-scale simulation is adopted to form the method of evaluating the quality of the normal mixed samples total test.The results show that the sample design is independent of whether the test sample population satisfies the same distribution for the normal class distribution experiments with the purpose of estimating the mean value,and for the normal class distribution experiments with the purpose of estimating the variance,the sample design is related to whether the sample population satisfies the same distribution,and there is sample loss.
作者 张志辉 ZHANG Zhihui(91404 Unit,Qinhuangdao 066001,China)
机构地区 [
出处 《系统仿真技术》 2024年第1期96-100,共5页 System Simulation Technology
关键词 正态分布 试验设计 混合样本 normal distribution experiment design mixed samples
  • 相关文献

参考文献10

二级参考文献42

  • 1蔡风景,杨益党,李元.基于损失程度变化的CreditRisk^+的鞍点逼近[J].中国管理科学,2004,12(6):29-33. 被引量:4
  • 2何道江.多元Poisson分布及其性质[J].安徽师范大学学报(自然科学版),2006,29(2):122-126. 被引量:5
  • 3Katz D, Baptista J, Azen S P, and Pike M C. Obtaining confidence intervals for the risk ratio in cohort studies[J]. Biometrics, 1978, 34: 469-474.
  • 4Gart J J. Approximate tests and interval estimation of the common relative risk iI~ the combination of 2 x 2 tables[J]. Biometrika, 1985, 72: 673-677.
  • 5Walter S D. The distribution of Levin's measure of attributable risk[J]. Biometrika, 1975, 62: 371- 375.
  • 6Walter S D. The estimation and interpretation of attributable risk in health research[J]. Biometrics, 1976, 32: 829-849.
  • 7Noether G E. Two confidencei ntervalsf or the ratio of two probabilitiesa nd some measures of effectiveness[J]. Journal of the American Statistical Association, 1957, 52: 36-45.
  • 8Bishop Y M M, Fienberg S E, Holland P W. Discrete Multivariate Analysis, Theory and Practice[M]. MIT Press, Cambridge, MA, 1975.
  • 9Thomas D G, and Gart J J. A table of exact confidence limits for differences and ratios of two proportions and their odds ratios[J]. Journal of the American Statistical Association, 1977, 72: 73-76.
  • 10Santner T J, and Snell M K. Small-sample confidence intervals for p1 -p2 and pl/p2 in 2 × 2 contingency tables[J]. Journal of the American Statistical Association, 1980, 73: 386-394.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部