摘要
本研究通过构建一个基于人工智能的学习模型,旨在实现计算机信息技术教学中的个性化学习,以提高学习效率和质量。研究采用智能推荐算法和用户画像技术,根据学生的学习行为和能力水平,动态规划个性化学习路径。在实验过程中,利用机器学习方法训练模型,并通过精确度、召回率等指标对模型性能进行评估。与传统教学方法相比,该模型学习效率平均提高了20%,学生满意度提升了30%。
This study aims to achieve personalized learning in computer information technology teaching by constructing an artificial intelligence-based learning model to improve learning efficiency and quality.The study adopts intelligent recommendation algorithms and user profiling techniques to dynamically plan personalized learning paths based on students'learning behaviors and ability levels.In the experimental process,the model is trained using machine learning methods,and the model performance is evaluated by precision,recall and other indicators.Compared with traditional teaching methods,the model's learning efficiency increased by 20%on average,and student satisfaction increased by 30%.
作者
李明穗
LI Mingsui(Guangxi Zhuang Autonomous Region Police Officer School,Nanning Guangxi 530000,China)
出处
《信息与电脑》
2024年第8期254-256,共3页
Information & Computer
关键词
人工智能
个性化学习
计算机信息技术教学
artificial intelligence
personalized learning
computer information technology teaching