期刊文献+

耦合Encoder-Decoder与RFR的径流预报模型研究

下载PDF
导出
摘要 针对传统径流预报模型存在可靠性不高的缺陷,提出耦合Encoder-Decoder与RFR的径流预报模型,即通过Encoder-Decoder架构深度学习模块对径流-气象资料进行编码、解码处理以提取得到新的语义特征,进而将其作为输入变量用以随机森林回归(RFR)拟合。在阜阳市径流量预报实证中表明,Encoder-Decoder与RFR模型的R2=0.75,MAE、RMSE分别为3.75、4.26亿m3;较之于RFR模型的R2提升了12.67%,而MAE和RMSE依次减小了17.40%、16.63%。
作者 张健
出处 《水利科学与寒区工程》 2024年第7期80-82,共3页 Hydro Science And Cold Zone Engineering
  • 相关文献

参考文献5

二级参考文献66

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部