摘要
针对传统径流预报模型存在可靠性不高的缺陷,提出耦合Encoder-Decoder与RFR的径流预报模型,即通过Encoder-Decoder架构深度学习模块对径流-气象资料进行编码、解码处理以提取得到新的语义特征,进而将其作为输入变量用以随机森林回归(RFR)拟合。在阜阳市径流量预报实证中表明,Encoder-Decoder与RFR模型的R2=0.75,MAE、RMSE分别为3.75、4.26亿m3;较之于RFR模型的R2提升了12.67%,而MAE和RMSE依次减小了17.40%、16.63%。
出处
《水利科学与寒区工程》
2024年第7期80-82,共3页
Hydro Science And Cold Zone Engineering