期刊文献+

基于MCMCC改进ORB-SLAM3的移动机器人导航

Improved ORB-SLAM3 Based on MCMCC for Mobile Robot Navigation
下载PDF
导出
摘要 【目的】针对VSLAM建立的稀疏特征地图不能直接用于导航,且现有的将基于稀疏特征图转化为栅格地图进行导航的方法存在建图精度不高的问题,无法实现准确导航。提出了一种基于MCMCC改进ORB-SLAM3的移动机器人导航实现方法,在仅有深度相机的嵌入式设备上可以实现室内实时地图构建、定位与导航。【方法】提出的方法利用基于多凸组合最大互相关熵(MCMCC)标准的后端优化算法来改进ORB-SLAM3的后端优化模块,降低非高斯噪声对建图精度的影响。同时在将稀疏特征图转化为栅格地图的过程中,利用回环信息更新栅格地图,以提高栅格地图的精度。【结果】仿真和真实场景实验验证了所提出方法的有效性。 【Purposes】 The sparse feature map established by using VSLAM cannot be directly used for navigation, and the existing methods of converting sparse feature maps into grid maps for navigation suffer from low accuracy of map construction, resulting in the failure to achieve accurate navigation. An improved ORB-SLAM3 navigation method is proposed based on multi-convex combined maximum correntropy criterion(MCMCC), which can realize the construction, positioning, and navigation of indoor real-time mapping on the embedded device with only a RGB-D camera. 【Methods】 The proposed method uses the back-end optimization algorithm based on MCMCC to combat the influence of non-Gaussian noises and to further improve the mapping accuracy of ORB-SLAM. Subsequently, in the process of converting the sparse feature map into a grid map, the grid map is updated with the loop detection information to improve the grid map accuracy for accurate navigation. 【Findings】 Furthermore, simulation and real scene experiments have been carried out to verify the effectiveness of the proposed method.
作者 赵亮 王婷 秦佳宁 续欣莹 程兰 ZHAO Liang;WANG Ting;QIN Jianing;XU Xinying;CHENG Lan(College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《太原理工大学学报》 CAS 北大核心 2024年第4期640-649,共10页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(62073232,61973226) 山西省科技合作交流基金项目(202104041101030)。
关键词 VSLAM 后端优化 MCMCC 栅格地图 回环更新 导航 VSLAM back-end optimization MCMCC raster map loop renewal navigation
  • 相关文献

参考文献3

二级参考文献27

  • 1Durrant-Whyte H,Bailey T. Simultaneous localizationandmapping. Part I[C]. IEEE Robotics and AutomationMagazine, 2006, 13 (3): 99-108.
  • 2S.Thrun and J. J. Leonard. Simultaneous localization andmapping in Handbook of Robotics[M]. Eds. Springer,New York, 2008, ch. 37.
  • 3A.J. Davison and N. Kita. 3D Simultaneous Localisationand Map Building Using Active Vision for a RobotMoving on Undulating Terrain[J]. 2001.
  • 4Couto, Leandro Nogueira, Fernando Santos AutonomousSelf-Localization of Mobile Robots through Reference PointBased Computer Vision[C]. Critical Embedded SystemBrazilian Conference. 2012.
  • 5Badino H. A robust approach for ego-motion estimationusing a mobile stereo platform[C]. First InternationalWorkshop on Complex Motion, .2004. 198*708.
  • 6Welch G, Bishop G. An Introduction to the KalmanFilter[M]. USA:University of North Carolina. 2003.
  • 7Francisco Angel Moreno, Jose-Luis Blanco, JavierGonzalez: Stereo vision specific models for particle filter-based SLAM[J]. Robotics and Autonomous Systems 57(9).2009.
  • 8Agrawal M, and Konolige K. FrameSLAM: Frombundle adjustment to real-time visual mapping[C]. IEEETransactions on Robotics, 24(5),2008: 1066^1077.
  • 9Agrawal M, Konolige K, Bolles R C. Localization andmapping for autonomous navigation in outdoor terrains: Astereo vision approach[c]. Proceedings of the Eighth IEEEWorkshop on Applications of Computer Vision. 2007.
  • 10Shi, J, Tomasi, C. Good features to track[J]. Proc.Computer Vision and Pattern Recognition 1994 : 593'600.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部