期刊文献+

An overview of image restoration based on variational regularization

原文传递
导出
摘要 Image restoration is a complicated process in which the original information can be recovered from the degraded image model caused by lots of factors.Mathematically,image restoration problems are ill-posed inverse prob-lems.In this paper image restoration models and algorithms based on variational regularization are surveyed.First,we review and analyze the typical models for denoising,deblurring and inpainting.Second,we construct a unified restoration model based on variational regularization and summarize the typical numerical methods for the model.At last,we point out eight diffcult problems which remain open in this field.
出处 《Frontiers of Mathematics in China》 CSCD 2024年第3期157-180,共24页 中国高等学校学术文摘·数学(英文)
  • 相关文献

参考文献3

二级参考文献17

  • 1施咸亮,陈芳.Gabor框架的必要条件[J].中国科学(A辑),2006,36(12):1413-1421. 被引量:5
  • 2Christensen O. An Introduction to Frames and Riesz Bases [M]. Boston: Birkhauser, 2002.
  • 3Goh S S, Ron A, Shen Z W. Gabor and Wavelet Frames [M]. Hackensack: World Scientific, 2007.
  • 4Daubechies I, Han B, Ron A, et al. Framelets: MRA-based construction of wavelet frames [J]. Appl Comput Harmon Anal, 2004, 14 (1): 1-46.
  • 5Ron A, Shen Z. Affine system in L2(R^d): The analysis of analysis operator [J]. J Funct Anal, 1997, 148 (2): 408-447.
  • 6Benedetto J J, Treiber O M. Wavelet frames: multiresolution analysis and extension principles [C] // Wavelet Transforms and Time-Frequency Signal Analysis. Boston: Birkhauser, 2001:1-36.
  • 7Borup L, Gribonval R, Nielsen M. Bi-framelet systems with few vanishing moments characterize Besov spaces [J]. Applied and Computational Harmonic Analysis, 2004, 17: 3-28.
  • 8Borup L, Gribonval R, Nielsen M. Tight wavelet frames in Lebsgue and Sobolev spaces [J]. Journal of Function Spaces and Applications, 2004, 2: 227-252.
  • 9Han B, Shen Z W. Characterization of Sobolev spaces of arbitrary smoothness using nonstationary tight wavelet frames [J]. Israel Journal of Mathematics, 2009, 172: 371-398.
  • 10Littlewood J E, Paley R E A C. Theorems on Fourier series and power series I [J]. J London Math Soc, 1931, 6: 230-233.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部