摘要
阐述针对人为地址输入进行识别,通过深度学习将语义相似相近的地址完成实体名识别。以BiLSTM-CRF进行数据集的训练,针对前后文联系确定最佳可能出现地址,将海量地址进行特征提取和分类构造,得出多数F1指标91%以上。模型应用于实际数据中,验证了该方法的有效性。
This paper describes the recognition of human input addresses,using deep learning to recognize entity names of semantically similar addresses.Train the dataset with Bi LSTM-CRF,determine the best possible address based on the previous and subsequent connections,extract features and classify massive addresses,and obtain a majority of F1 indicators above 91%.The model was applied to actual data to verify the effectiveness of the method.
作者
邱坚
张润熙
沈俊杰
QIU Jian;ZHANG Runxi;SHEN Junjie(China Mobile Shanghai Branch Network Optimization Center,Shanghai,200060,China)
出处
《电子技术(上海)》
2024年第4期348-350,共3页
Electronic Technology
关键词
命名体识别
长短时记忆网络
条件随机场
信息抽取
named entity recognition
long short-term memory network
conditional random field
information extraction