摘要
We theoretically investigate the Ruderman–Kittel–Kasuya–Yosida(RKKY) interaction in helical higher-order topological insulators(HOTIs), revealing distinct behaviors mediated by hinge and Dirac-type bulk carriers. Our findings show that hinge-mediated interactions consist of Heisenberg, Ising, and Dzyaloshinskii–Moriya(DM) terms, exhibiting a decay with impurity spacing z and oscillations with Fermi energy εF. These interactions demonstrate ferromagnetic behaviors for the Heisenberg and Ising terms and alternating behavior for the DM term. In contrast, bulk-mediated interactions include Heisenberg, twisted Ising, and DM terms, with a conventional cubic oscillating decay. This study highlights the nuanced interplay between hinge and bulk RKKY interactions in HOTIs, offering insights into designs of next-generation quantum devices based on HOTIs.
作者
金莎
李健
李清旭
朱家骥
Sha Jin;Jian Li;Qing-Xu Li;and Jia-Ji Zhu(School of Science,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Institute for Advanced Sciences,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Southwest Center for Theoretical Physics,Chongqing University,Chongqing 401331,China)
基金
supported by the research foundation of Institute for Advanced Sciences of CQUPT(Grant No.E011A2022328)。