期刊文献+

低分辨率暗弱光斑图像的目标识别技术研究

Research on target recognition technology for low resolution dim spot images
下载PDF
导出
摘要 针对新一代激光雷达对远距离、高速运动目标实现超快发现、检测与识别的需求,解决自然环境多变、目标暗弱且高速运动导致图像分辨率低的问题,鉴于传统光学和传统网络无法对目标实现高精准的识别,提出低分辨率暗弱光斑图像的深度层次轮廓识别网络LRDSI-DLCRN,该网络引入全局权重编码模块,采用子像素卷积进行上采样,丰富了不同层次边缘结构特征的相关性,在公开数据集PASCAL VOC 2012和真实环境采集的Spotcraf数据集上的效果都优于其它流行算法。 In response to the demand of the new generation of LiDAR for ultra fast detection,detection,and recognition of long-distance and high-speed moving targets,and to solve the problem of low image resolution caused by the changing natural envi-ronment,dim targets,and high-speed motion,traditional optics and networks cannot achieve high-precision recognition of targets.Therefore,a deep level contour recognition network LRDSI-DLCRN for low resolution dim spot images is proposed,The network in-troduces a global weight encoding module and uses sub pixel convolution for upsampling,enriching the correlation of edge struc-ture features at different levels.The performance on the public dataset PASCAL VOC 2012 and the real environment collected Spotcraf dataset is superior to other popular algorithms.
作者 李欣阳 李智 Li Xinyang;Li Zhi(College of Electronics and Information Engineering,Sichuan University,Chengdu 610065,China)
出处 《现代计算机》 2024年第9期9-16,共8页 Modern Computer
关键词 低分辨率光斑图像 轮廓识别 子像素卷积 low resolution spot images contour recognition subpixel convolution
  • 相关文献

参考文献2

二级参考文献23

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部