期刊文献+

Optical trapping-enhanced probes designed by a deep learning approach

原文传递
导出
摘要 Realizing optical trapping enhancement is crucial in biomedicine,fundamental physics,and precision measurement.Taking the metamaterials with artificially engineered permittivity as photonic force probes in optical tweezers will offer unprecedented opportunities for optical trap enhancement.However,it usually involves multi-parameter optimization and requires lengthy calculations;thereby few studies remain despite decades of research on optical tweezers.Here,we introduce a deep learning(DL)model to attack this problem.The DL model can efficiently predict the maximum axial optical stiffness of Si∕Si_(3)N_(4)(SSN)multilayer metamaterial nanoparticles and reduce the design duration by about one order of magnitude.We experimentally demonstrate that the designed SSN nanoparticles show more than twofold and fivefold improvement in the lateral(k_(x)and k_(y))and the axial(k_(z))optical trap stiffness on the high refractive index amorphous TiO_(2)microsphere.Incorporating the DL model in optical manipulation systems will expedite the design and optimization processes,providing a means for developing various photonic force probes with specialized functional behaviors.
出处 《Photonics Research》 SCIE EI CAS CSCD 2024年第5期959-968,共10页 光子学研究(英文版)
基金 Major Science and Technological Research Project of Hunan Province(2023JZ1010) Natural Science Foundation of Hunan Province(2021JJ40679) Scientific Research Project of the National University of Defense Technology(ZK20-14) National Natural Science Foundation of China(61975237)。
  • 相关文献

参考文献3

二级参考文献4

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部