摘要
短时交通流预测是动态交通控制与管理领域的关键问题之一。由于不确定性和非线性的存在,短时交通流预测仍然是一项具有挑战性的任务。为了提高短时交通流预测的准确性,通过提出一种基于黏菌算法(Slime Mould Algorithm,SMA)优化的支持向量回归模型(Support Vector Regression,SVR)研究了短时交通流的预测。收集蚌埠市东海大道-曹山路交叉口工作日早晚高峰交通流量数据,利用SMA对SVR模型的惩罚参数和核函数参数进行高效寻优,建立SMA-SVR模型进行了案例验证。研究结果表明,相比于原始SVR模型以及基于粒子群优化算法和麻雀搜索算法的SVR模型,SMA-SVM模型预测精度是最高的,即R 2=0.97054,RMSE=47.7826,MAPE=7.1703%,并且迭代收敛速度也是最快的。可见,SMA-SVR模型能够较好地适配于城市道路的短时交通流预测。
Short-term traffic flow prediction is one of the key issues in the field of dynamic traffic control and management.Due to uncertainty and nonlinearity,short-term traffic flow prediction is still a challenging task.In order to improve the accuracy of short-time traffic flow prediction,this paper proposes a Support Vector Regression(SVR)model optimised based on Slime Mould Algorithm(SMA).the data of weekday morning and evening peak traffic flow at Donghai Avenue-Caoshan Road intersection in Bengbu City were collected,the penalty parameters and kernel function parameters of the SVR model are efficiently optimised using SMA,the SMA-SVR model is built for case validation.The results show that the SMA-SVM model has the highest prediction accuracy,i.e.R 2=0.97054,RMSE=47.7826,MAPE=7.1703%,and the fastest iterative convergence speed compared with the original SVR model and the SVR model based on the Particle Swarm Optimisation algorithm and the Sparrow Search algorithm.It can be seen that the proposed SMA-SVM model can be used for short-term traffic flow prediction on urban roads.
作者
岳鑫鑫
常山
马露
于敏
韩意
YUE Xinxin;CHANG Shan;MA Lu;YU Min;HAN Yi(College of Architecture,Anhui Science and Technology University,Bengbu 233030;College of Civil Engineering,Hefei University of Technology,Hefei 230009,Anhui,China)
出处
《安顺学院学报》
2024年第3期131-136,共6页
Journal of Anshun University
基金
安徽省高校科学研究重大项目“考虑初始状态的水合物沉积物热-水-力耦合机理”(2023AH040274)
安徽省高校科学研究重点项目“正八边形腹梁受剪性能研究”(2023AH051841)
安徽省高校科学研究重点项目“极端环境下基于COOT算法及时变可靠度的混凝土结构耐久性研究”(2023AH051863)
安徽省高校优秀青年骨干教师国内访问研修项目“腐蚀环境下基于全寿命设计需求与时变可靠度的混凝土结构耐久性研究”(gxgnfx2022042)。
关键词
城市道路
短时交通流
支持向量回归模型
黏菌优化
urban roads
short-term traffic flow
Support Vector Regression models
Slime Mould Optimisation