摘要
小型电力用户参与电能交易可进一步推动售电侧市场发展。针对当前分布式交易方法未充分考虑小型电力用户特性,且用户储能在交易内的应用潜力仍需进一步挖掘的问题,提出一种储能参与下的社区光伏用户日前-日内两阶段交易框架,日前阶段通过储能充放电提高交易量,日内阶段通过储能调控降低预测误差的影响,以提高用户交易收益并缓解上级电网运行压力。首先,划分用户身份,通过考虑储能运行功率的购售电分量,构建电量竞标模型,制定储能日前运行计划。其次,针对多类型的利益交互,基于多重博弈对交易行为进行建模,求解各用户的交易策略。再次,采用模型预测控制校正储能日内运行计划,以缓解预测误差平衡对上级电网的影响。最后,通过算例验证了所提模型可在传统交易模式的基础上进一步提高用户电能交易量,同时降低对上级电网的依赖程度。
The participation of small power users in electricity trading can promote the development of the electricity sales market.However,the characteristics of small power users are not fully considered in the current distributed transaction methods,and the potential of user energy storage in the transaction needs to be further explored.Therefore,a two-stage dayahead and intraday trading framework for community photovoltaic users participating in energy storage is proposed.In the day-ahead stage,the trading volume is increased by energy storage charging and discharging,whereas in the intraday stage,the influence of prediction error is reduced by energy storage regulation to improve users'trading income and relieve the operating pressure of the power grid.First,the user identity was divided,and an electricity sales bidding model was constructed by considering the purchase and sale of power in the energy storage operation to formulate the energy storage day-ahead operation plan.Second,considering the diverse interest interactions,the trading behavior was modeled based on multiple games to solve the trading strategy of each user.Third,model predictive control was used to correct the intraday energy storage operation plan and alleviate the influence of the forecast error balance on the power grid.Finally,an example was analyzed to verify that the proposed model can further increase the power-trading volume of users and reduce the dependence on the power grid based on the traditional transaction mode.
作者
伍宇铜
刘洋
许立雄
李金鸿
胡开鑫
WU Yutong;LIU Yang;XU Lixiong;LI Jinhong;HU Kaixin(College of Electrical Engineering,Sichuan University,Chengdu 610065,China;Key Laboratory of Intelligent Electric Power Grid of Sichuan Province(Sichuan University),Chengdu 610065,China)
出处
《电力建设》
CSCD
北大核心
2024年第7期167-178,共12页
Electric Power Construction
基金
四川省科技计划资助项目(2023YFG0132)。
关键词
社区光伏用户
分布式交易
储能运行优化
多重博弈
模型预测控制
community photovoltaic user
distributed transaction
energy storage optimization operation
multigame
model predictive control