期刊文献+

基于加权预测误差的低复杂度去混响

Low Complexity Dereverberation Based on Weighted Prediction Error
下载PDF
导出
摘要 在音视频会议以及人机交互等应用场景下,设备所采集到的音频信号往往会受到室内混响的干扰,从而降低语音的清晰度与可懂度。基于加权预测误差的自适应去混响算法是目前较为主流的盲去混响算法,该算法能够实时有效地去除混响,然而往往具有较高的计算复杂度。为降低算法的复杂度,通过分块对角矩阵简化原算法中相关的矩阵运算,实验证明,所设计的算法在确保语音质量的同时,降低了原算法的计算开销。 In application scenarios such as audio and video conferences and human-computer interaction,the audio signals collected by the device are often disturbed by indoor reverberation,thereby reducing the clarity and intelligibility of speech.The adaptive dereverberation algorithm based on the weighted prediction error is the mainstream blind dereverberation algorithm at present.This algorithm can effectively remove the reverberation in real time,but it often has high computational complexity.In order to reduce the complexity of the algorithm,the relevant matrix operations in the original algorithm is simplified by dividing the diagonal matrix.The experiment proves that the algorithm designed reduces the computational cost of the original algorithm while ensuring the voice quality.
作者 狄金海 戴天池 DI Jinhai;DAI Tianchi(School of Artificial Intelligence,Zhejiang Industry and Trade Vocational College,Wenzhou Zhejiang 325003,China;School of Information Engineering,Southeast University,Nanjing Jiangsu 210096,China)
出处 《电子器件》 CAS 2024年第3期667-671,共5页 Chinese Journal of Electron Devices
关键词 去混响 加权预测误差 语音增强 dereverberation weighted prediction error speech enhancement
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部