摘要
研究分数阶PMSM(permanent magnet synchronization motor)混沌系统的同步问题,根据Lyapunov稳定性理论及分数阶微积分,运用自适应滑模控制理论,通过设计分数阶滑模面及适应规则,研究了其自适应滑模同步问题,得出了系统同步的充分条件,并用数值仿真验证了结论的正确性.
Fractional-order PMSM(permanent magnet synchronization motor)chaotic systems were studied based on Lyapunov stability theory and fractional-order calculus,using self-adaptive sliding mode theory.Fractional-order sliding mode function and adaptive law was designed.Selfr adaptive sliding mode synchronization of hyper chaotic system was researched,the sufficient conditions were established to ensure the systems acquire self-adaptive sliding mode synchronization.Numerical simulations verified the feasibility of the proposed method.
作者
张巧
毛北行
杨永
ZHANG Qiao;MAO Beixing;YANG Yong(School of Mathematics,Zhengzhou University of Aeronautics,Zhengzhou 450046,China)
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2024年第4期21-26,共6页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学青年基金资助项目(11801528,41906003)。
关键词
分数阶
PMSM系统
自适应
滑模同步
fractional order
PMSM system
self-adaption
sliding mode synchronization