期刊文献+

基于AVMD-ITKEO算法的次/超同步振荡辨识

An AVMD-ITKEO Method Based Identification of Subsynchronous/Supsynchronous Oscillation
下载PDF
导出
摘要 针对大规模风电系统中可能出现的次/超同步振荡问题,文章提出了一种改进Teager-Kaiser能量算子算法和自适应变分模态分解算法,通过将这两种算法相结合实现了次/超同步振荡模态参数的准确辨识。首先,通过改进的万有引力算法最小化包络信息熵,求解最优模态分量数与惩罚因子;然后,进行变分模态分解以获得各主导模态;之后,再通过改进的Teager-Kaiser算法辨识各主导模态的参数;最后,通过辨识模拟信号和实际电网数据并与其他算法进行对比,验证了文章所提振荡参数辨识算法的有效性和优越性。 In order to solve the potential problem of subsynchronous/supsynchronous oscillation(SSO)caused by large-scale wind power systems,an improved Teager-Kaiser energy oper-ator(ITKEO)algorithm combined with adaptive variational mode decomposition(VMD)is proposed to achieve the accurate identification of the parameters of SSO.Firstly,an improved gravitation search algorithm was used to minimize the envelope information entropy for obtaining the optimal modal component number and penalty factor,then the VMD was used to obtain the intrinsic mode function(IMF).Then,the parameters of each IMF are identified by the ITKEO algorithm.Finally,the validity and superiority of the proposed method are tested and verified by identifying the analog signal and the actual network data and comparing with other algorithms.
作者 张浙波 林玮 杨磊 刘树 张彬 常富杰 ZHANG Zhebo;LIN Wei;YANG Lei;LIU Shu;ZHANG Bin;CHANG Fujie
出处 《电力系统装备》 2024年第6期79-83,共5页 Electric Power System Equipment
基金 浙江省自然科学基金项目(LY23E070002) 浙能集团科技项目(ZNKJ-2022-078)。
关键词 风电系统 次/超同步振荡 自适应变分模态分解 最小包络信息熵 改进Teager-Kaiser能量算子 wind power system subsynchronous/supsynchronous oscillation adaptive variational mode decomposition minimum envelope information entropy improved Teager-Kaiser energy oper-ator
  • 相关文献

参考文献7

二级参考文献75

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2徐文远,张大海.基于模态分析的谐波谐振评估方法[J].中国电机工程学报,2005,25(22):89-93. 被引量:91
  • 3李天云,高磊,赵妍.基于HHT的电力系统低频振荡分析[J].中国电机工程学报,2006,26(14):24-30. 被引量:110
  • 4李辉,郑海起,唐力伟.声测法和经验模态分解在轴承故障诊断中的应用[J].中国电机工程学报,2006,26(15):124-128. 被引量:26
  • 5HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society:A,1998(454):903-993.
  • 6DU Qiuhua,YANG Shunian.Application of the EMD method in the vibration analysis of ball bearings[J].Mechanical Systems and Signal Processing,2007,21(6):2634-2644.
  • 7FLANDRIN P,RILLING G,GONCALVES P.Empirical mode decomposition as a filter band[J].IEEE Signal Processing Letters,2004,11(2):112-114.
  • 8DRAGOMIRETSKIY K,ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processing,2014,62(3):531-544.
  • 9KENNEDY J,EBERHART R C.Particle swarm optimization[C]∥IEEE International Conference on Neural Networks.Piscataway,NJ,USA:IEEE,1995:1942-1948.
  • 10LIN J,ZUO M J,FYFE K R.Mechanical fault detection based on the wavelet de-noising technique[J].Journal of Vibration and Acoustics,2004,126:9-16.

共引文献439

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部