摘要
目标建立一种新的基于全局-局部注意机制和YOLOv5的宫颈病变细胞检测模型(Trans-YOLOv5),为准确、高效地分析宫颈细胞学图像并做出诊断提供帮助。方法使用共含有7410张宫颈细胞学图像且均包含对应真实标签的公开数据集。采用结合了数据扩增方式与标签平滑等技巧的YOLOv5网络结构实现对宫颈病变细胞的多分类检测。在YOLOv5骨干网络引用CBT3以增强深层全局信息提取能力,设计ADH检测头提高检测头解耦后定位分支对纹理特征的结合能力,从而实现全局-局部注意机制的融合。结果实验结果表明Trans-YOLOv5优于目前最先进的方法。mAP和AR分别达到65.9%和53.3%,消融实验结果验证了Trans-YOLOv5各组成部分的有效性。结论本文发挥不同注意力机制分别在全局特征与局部特征提取能力的差异,提升YOLOv5对宫颈细胞图像中异常细胞的检测精度,展现了其在自动化辅助宫颈癌筛查工作量的巨大潜力。
The development of various models for automated images screening has significantly enhanced the efficiency and accuracy of cervical cytology image analysis.Single-stage target detection models are capable of fast detection of abnormalities in cervical cytology,but an accurate diagnosis of abnormal cells not only relies on identification of a single cell itself,but also involves the comparison with the surrounding cells.Herein we present the Trans-YOLOv5 model,an automated abnormal cell detection model based on the YOLOv5 model incorporating the global-local attention mechanism to allow efficient multiclassification detection of abnormal cells in cervical cytology images.The experimental results using a large cervical cytology image dataset demonstrated the efficiency and accuracy of this model in comparison with the state-of-the-art methods,with a mAP reaching 65.9%and an AR reaching 53.3%,showing a great potential of this model in automated cervical cancer screening based on cervical cytology images.
作者
胡雯然
傅蓉
HU Wenran;FU Rong(School of Biomedical Engineering,Southern Medical University,Guangzhou 510515,China)
出处
《南方医科大学学报》
CAS
CSCD
北大核心
2024年第7期1217-1226,共10页
Journal of Southern Medical University
基金
国家自然科学基金(82172020)。