期刊文献+

肺部支气管分割的设计与改进:3D UX-Net

Design and improvement of pulmonary bronchial segmentation in the lung:3D UX-Net
下载PDF
导出
摘要 为了实现肺部支气管的精确分割,并获取支气管的内径,提出了一种基于3D UX-Net模型的肺部支气管分割设计和后处理优化方法。首先,采用3D UX-Net模型训练支气管数据;其次,结合区域选择、阈值调整及最大连通域分析等提升分割精度的全新后处理(Reprocess)流程;最后,在私有数据集上与其他算法模型进行对比实验。实验结果表明:基于3D UX-Net模型的Dice系数评价指标从0.83提升到0.85,自制和临床数据集关于支气管内径的误差在0.2mm,得出本文提出的模型和后处理方法能够快速而准确地分割支气管。 To achieve accurate segmentation of the pulmonary bronchi and obtain the inner diameter of the bronchus,a pulmonary bronchi segmentation design and post-processing optimization method is proposed based on the 3D UX-Net model.First,a 3D UX-Net model is used to train bronchial data.Second,a new post-processing(Reprocess)process is combined with region selection,threshold adjustment and maximum connected domain analysis to improve segmentation accuracy.Finally,comparative experiments with other algorithm models are carried out on private datasets.The experimental results show that the evaluation index of the Dice coefficient based on the 3D UX-Net model is improved from 0.83 to 0.85,and the error of the inner diameter of the bronchus is 0.2mm based on homemade and clinical datasets.It can be concluded that the proposed model and post-processing method are able to segment the bronchi quickly and accurately.
作者 徐铭佑 李湘民 夏敏燕(指导) XU Mingyou;LI Xiangmin;XIA Minyan(School of Mechanical Engineering,Shanghai Dianji University,Shanghai 201306,China)
出处 《上海电机学院学报》 2024年第3期181-186,共6页 Journal of Shanghai Dianji University
关键词 支气管 语义分割 3D UX-Net bronchi semantic segmentation 3D UX-Net
  • 相关文献

参考文献5

二级参考文献62

  • 1BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 2BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 3HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 4BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 6VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 7VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 8YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 9POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.
  • 10BENGIO Y,LECUN Y. Scaling learning algorithms towards AI[ M]// BOTTOU L,CHAPELLE O, DeCOSTE D,et al. Large-Scale Kernel Machines. Cambridge: MIT Press ,2007:321-358.

共引文献683

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部