摘要
从携程网爬取了2010—2019年成都市游记数据,构建旅游景区关键词文本共现网络,采用数量统计、空间分析、复杂网络分析等方法,挖掘成都市旅游景区游客到访的时空分异特征。结果表明,成都市旅游景区到访频率呈长尾分布,空间上形成以青城山—都江堰、金牛—武侯主城区为高热度中心的“双核摄动”格局;成都市旅游景区文本共现网络具有较高的集聚系数和较短的平均路径,等级圈层结构和马太效应较显著,热门景区对邻近热门景区的空间溢出效应显著,但对邻近低等级景区的带动效果有限;成都市旅游景区空间结构由条带状和团簇式向轴辐式和网络化方向转变,在区域旅游一体化发展中的作用日益显著。
In this article,we extracted the Chengdu travel notes from 2010 to 2019 from Ctrip,and constructed a co-occurrence network of tourist attractions by text analysis.Then,we employed the approaches of statistical analysis,spatial analysis and complex network analysis to explore the spatio-temporal characteristics of tourists visiting behaviors to Chengdu.The results show that the visiting frequencies of tourist attractions in Chengdu follow a long-tailed distribution.Spatially,a dual-core pattern is formed with centers of Qingcheng Mountain-Dujiangyan and Jinniu-Wuhou.The text co-occurrence network of tourist attractions in Chengdu shows high values of agglomeration coefficient and low average shortest path length.Besides,the hierarchical pattern and the Matthew effect of tourist attractions in Chengdu are obvious,the spatial spillover effect of popular tourist attractions to the other neighboring tourist attractions is obvious while for those not well-known tourist attractions is very limited.In general,the spatial structure of tourist attractions in Chengdu is shifted from strip-like and clustering to hub-and-spoke and network,indicating that Chengdu plays increasing role in the regional tourism integration development.
作者
张红
李玥
邓雯
王艺
ZHANG Hong;LI Yue;DENG Wen;WANG Yi(School of Geographic Sciences,East China Normal University,Shanghai 200241,China;Faculty of Geosciences and Environmental Engineering,Southwest Jiaotong University,Chengdu 611756,China)
出处
《地理空间信息》
2024年第7期31-35,共5页
Geospatial Information
基金
国家自然科学基金面上项目(42171420)
四川省科技支撑计划资助项目(2020YJ0325)
中央高校基本科研业务费资助项目(2021ECNU-YYJ015)
华东师范大学教学改革与研究资助项目(2022HSJG006)。
关键词
旅游景区
网络游记
空间结构
文本共现
复杂网络分析
tourist attraction
online travel note
spatial structure
text co-occurrence
complex network analysis