摘要
针对现有时序知识图谱嵌入方法仅考虑时序信息的关系或仅编码独立的时序向量,知识图谱补全性能不高的问题,提出时间感知组合(TAC)的时序知识图谱补全方法.通过建模维度特征,分析时序信息对知识图谱补全方法的有效程度.通过时序信息内嵌和独立相结合的嵌入方式,考虑时序信息嵌入后,不同学习方式对表示学习能力产生不同的影响.提出的方法利用长短时记忆(LSTM)网络编码时序信息,学习到更准确的时间维度特征,有助于提升时序图谱的性能.在ICEWS14、ICEWS05-15和GDELT数据集上进行实验,验证了时间感知组合方法的有效性.对比相关的研究性能指标可知,本文方法在链接预测上表现较优.
A time-aware combination(TAC)method for temporal knowledge graph completion was proposed aiming at the problem that the existing temporal knowledge graph embedding methods only consider the relationship of temporal information or encode independent temporal vectors and the completion performance of these methods is not high enough.The effectiveness of temporal information on knowledge graph completion methods was analyzed by modeling dimensional features.Different learning methods have different effects on the representation learning ability after considering the embedding of temporal information through the embedding method of combining the embedded and independent temporal information.Long short-term memory(LSTM)network was utilized to encode temporal information,learn more accurate temporal dimension features and help to improve the performance of temporal graph.Experiments on ICEWS14,ICEWS05-15 and GDELT datasets verified the effectiveness of the timeaware combination method.The related research performance metrics were compared.Results show that the proposed method performs better in link prediction.
作者
李忠良
陈麒
石琳
杨朝
邹先明
LI Zhongliang;CHEN Qi;SHI Lin;YANG Chao;ZOU Xianming(College of Artificial Intelligence,North China University of Science and Technology,Tangshan 063210,China;Hebei Key Laboratory of Industrial Intelligent Perception,Tangshan 063210,China)
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2024年第8期1738-1747,共10页
Journal of Zhejiang University:Engineering Science