期刊文献+

Transcriptomic analysis reveals hub genes and pathways in response to acetic acid stress in Kluyveromyces marxianus during high-temperature ethanol fermentation

原文传递
导出
摘要 The thermotolerant yeast Kluyveromyces marxianus is known for its potential in high-temperature ethanol fermentation,yet it suffers from excess acetic acid production at elevated temperatures,which hinders ethanol production.To better understand how the yeast responds to acetic acid stress during high-temperature ethanol fermentation,this study investigated its transcriptomic changes under this condition.RNA sequencing(RNA-seq)was used to identify differentially expressed genes(DEGs)and enriched gene ontology(GO)terms and pathways under acetic acid stress.The results showed that 611 genes were differentially expressed,and GO and pathway enrichment analysis revealed that acetic acid stress promoted protein catabolism but repressed protein synthesis during high-temperature fermentation.Protein-protein interaction(PPI)networks were also constructed based on the interactions between proteins coded by the DEGs.Hub genes and key modules in the PPI networks were identified,providing insight into the mechanisms of this yeast’s response to acetic acid stress.The findings suggest that the decrease in ethanol production is caused by the imbalance between protein catabolism and protein synthesis.Overall,this study provides valuable insights into the mechanisms of K.marxianus’s response to acetic acid stress and highlights the importance of maintaining a proper balance between protein catabolism and protein synthesis for high-temperature ethanol fermentation.
出处 《Stress Biology》 2023年第1期288-299,共12页 逆境生物学(英文)
基金 supported by the National Undergraduate Training Program for Innovation and Entrepreneurship(202110022074,202198039) Beijing Municipal Education Commission through the Innovative Transdisciplinary Program"Ecological Restoration Engineering".
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部