摘要
为了提高电火花加工放电间隙的实时识别准确率,文中提出了一种基于FPGA高速数据采集的神经网络的放电间隙在线识别方案。利用FPGA和AD模块对加工间隙电压数据进行高速采集,通过FPGA内部的FIFO和串口协同实现周期性数据传输。在Python的Pytorch库构建了CNN GRU融合神经网络模型,对所采集的数据进行在线识别,验证了该采集系统的可行性。实验结果表明:文中方案对加工电压脉冲的离线识别准确率达到了97.35%,优于CNN和GRU方法,满足了电火花加工对间隙电压识别的高精度要求,实现了神经网络的实时在线识别放电间隙。
In order to improve the accuracy of real time recognition of EDM discharge gap,the paper presents a neural network based on FPGA high speed data acquisition as an online recognition scheme for discharge gap.High speed acquisition of machining gap voltage data is carried out with FPGA and AD modules,and periodic data transmission is realized through the internal FIFO of FPGA and serial port cooperatively.A CNN GRU fusion neural network model was constructed in Python's Pytorch library to recognize the collected data online,which verified the feasibility of the acquisition system.The experimental results show that the offline recognition accuracy of the machining voltage pulse by the scheme proposed in the paper reaches 97.35%,higher than that of the CNN and GRU methods.It is concluded that this scheme meets the high precision requirements of gap voltage recognition in EDM machining and realizes the real time on line recognition of the discharge gap by the neural network.
作者
唐有贵
苏国康
叶之骞
陈航
张永俊
TANG Yougui;SU Guokang;YE Zhiqian;CHEN Hang;ZHANG Yongjun(School of Electromechanical Engineering,Guangdong University of Technology,Guangzhou 510006,China;Guangzhou Key Laboratory of Nontraditional Machining and Equipment,Guangzhou 510006,China)
出处
《西安工业大学学报》
CAS
2024年第3期273-282,共10页
Journal of Xi’an Technological University
基金
广东省教育部产学研结合项目(2010B090400381)。
关键词
电火花加工
现场可编程门阵列
放电间隙识别
高速数据采集
electrical discharge machining
field programmable gate array
discharge gap identification
high speed data acquisition