期刊文献+

一种改进ICP点云配准方法的研究

An Improved ICP Point Cloud Registration Method
原文传递
导出
摘要 点云配准是计算机视觉中一个基本而又重要的研究课题。针对现有配准算法对初值敏感、特征描述符普适性差的问题,提出了一种Harris3D与改进RANSAC结合粗配准和基于新型加权因子与新型特征描述符ICP精配准的两步配准法。改进RANSAC方法不断迭代,为精配准提供良好的位姿初值。点云的法线计算可充分描述点云特征的描述符与加权因子。在精配准中根据特征距离查询最近点,不断计算点云间特征距离,根据3σ准则剔除误匹配点对,从而实现加快收敛和提高精度的效果。结果表明,该算法相比传统ICP算法,收敛时间仅为其20%,使最终的配准误差降低至0.008 mm以下,可对一般点云进行快速坐标系对齐。 Point cloud registration is a basic and important research topic in computer vision.Aiming at the problems of existing registration algorithms that sensitive initial values and poor universality on feature descriptors,this paper proposes a two-step registration method including manual rough registration and ICP fine registration based on new weighted factor and new feature descriptors.The normal calculation of the point cloud can adequately describe the characteristics and weighting factors of point cloud descriptors.In the precision registration,the nearest point is queried according to the feature distance,the feature distance between point clouds is constantly calculated,and the mismatched point pairs are removed according to the 3o criterion,thus achieving the effect of accelerating convergence and improving accuracy.The results show that compared with the traditional ICP algorithm,the convergence time of the proposed algorithm is only 20%,and the final registration error is reduced to 0.008 mm.
作者 李燕 LI Yan(Unit 91550 of PLA,Dalian 116023,China)
机构地区 中国人民解放军
出处 《光学与光电技术》 2024年第3期23-29,共7页 Optics & Optoelectronic Technology
关键词 点云配准 迭代最近点 Harris3D算法 特征描述符 精配准 point cloud registration iteration closest point Harris3D algorithm feature descriptor fine registration
  • 相关文献

参考文献8

二级参考文献65

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:99
  • 2张学昌,习俊通,严隽琪.基于点云数据的复杂型面数字化检测技术研究[J].计算机集成制造系统,2005,11(5):727-731. 被引量:27
  • 3Farin G, Hoschek J, Kim M S. Handbook of computer aided geometric design[M]. Amsterdam: North-Holland, 2002: 651-681
  • 4Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256
  • 5Chen Y, Medioni G. Object modeling by registration of multiple range images[J]. Image and Vision Computing, 1992, 10(3): 145-155
  • 6Potmesil M. Generating models of solid objects by matching 3D surface segments[C]//Proceedings of the 8th International Joint Conference on Artificial Intelligence, Karlsruhe, 1983: 1089-1093
  • 7Masuda T, Yokoya N. A robust method for registration and segmentation of multiple range images[J]. Computer Vision and Image Understanding, 1995, 61(3): 295-307
  • 8Johnson A, Hebert M. Surface registration by matching oriented points[C]//Proceedings of International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Ottawa, 1997: 121-128
  • 9Yang M, Lee E. Segmentation of measured data using a parametric quadric surface approximation[J]. Computer-Aided Design, 1999, 31(7): 449-457
  • 10Hoppe H, DeRose T, Duchamp T. Surface reconstruction from unorganized points[J]. Computer Graphics, 1992, 26(2): 71- 78

共引文献317

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部