期刊文献+

基于全局敏感性分析的火电厂能耗诊断研究

Energy Consumption Diagnosis of Thermal Power Plant Based on Global Sensitivity Analysis
下载PDF
导出
摘要 针对现代火电厂能耗较高的问题,介绍1种基于全局敏感性分析的火电厂能耗诊断方法。该方法主要由2个部分构成,一部分为基于GWO (Grey Wolf Optimizer,灰狼优化算法)的火电厂能耗诊断模型,另一部分为基于全局敏感性分析的火电厂能耗计算方法,在2个模块共同作用下,准确计算出火电厂能耗水平,以此为火电厂节能优化提供支持,具有一定的应用价值。 Aiming at the problem of high energy consumption of modern thermal power plants,a method of energy consumption diagnosis of thermal power plants based on global sensitivity analysis was introduced.The method mainly consists of two parts,one is the diagnosis model of energy consumption of thermal power plant based on GWO(Grey Wolf Optimizer),the other is the calculation method of energy consumption of thermal power plant based on global sensitivity analysis.Under the joint action of the two modules,the energy consumption level of thermal power plant was accurately calculated,so as to provide support for energy-saving optimization of thermal power plant,and has certain application value.
作者 何钦 HE Qin(Chaozhou Power Co.,Ltd.,Guangdong Datang International Power Generation Co.,Ltd.,Chaozhou 515723,Guangdong,China)
出处 《能源与节能》 2024年第7期82-85,共4页 Energy and Energy Conservation
关键词 全局敏感性 火电厂 能耗诊断 灰狼优化算法 global sensitivity thermal power plant energy consumption diagnosis Grey Wolf Optimizer
  • 相关文献

参考文献5

二级参考文献75

  • 1付昶,王伟锋,朱立彤.汽轮机通流能力分析及试验研究[J].热力发电,2013,42(1):48-51. 被引量:14
  • 2邴汉昆,丁常富,卢盛阳,张炜光.基于特征通流面积的汽轮机通流部分结垢诊断[J].热力发电,2013,42(2):92-94. 被引量:5
  • 3丁旭春,王毅,殷志龙,施延洲.超临界630 MW机组汽轮机通流结垢诊断及处理[J].热力发电,2013,42(11):138-141. 被引量:7
  • 4吴亮红,王耀南,周少武,袁小芳.采用非固定多段映射罚函数的非线性约束优化差分进化算法[J].系统工程理论与实践,2007,27(3):128-133. 被引量:27
  • 5QU B, SUGANTHAN P N, DAS S. A distance-based locally in- formed particle swarm model for multimodal optimization [ J]. IEEE Transactions on Evolutionary Computation, 2013, 17 (3) : 387 - 402.
  • 6MIRJALILI S, MIILIALILI S M, LEWIS A. Grey wolf optimization [ J]. Advances in Engineering Software, 2014, 69(7) : 46 - 61.
  • 7MADADI A, MOTLAGH M M. Optimal control of DC motor using grey wolf optimizer algorithm [ J]. Technical Journal of Engineering and Applied Science, 2014,4(4):373 -379.
  • 8EMARY E, ZAWBAA H M, GROSAN C, et al. Feature subset se- lection approach by gray-wolf optimization [ C]//Proceedings of the International Mre-European Conference on Industrial Advancement. Berlin: Springer, 2014:1 - 13.
  • 9MIRJALILI S. How effective is the grey wolf optimizer in training multilayer perceptrons [J]. Applied Intelligence, 2015,42(4) :608 -619.
  • 10EI-GAAFARY A A M, MOHAMED Y S, HEMEIDA A M, et al. Grey wolf optimization for multi input multi output system [ J]. Uni- versal Journal of Communications and Networks, 2015, 3(1) : 1 -6.

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部