摘要
目的为刻画微分复合算子乘积C_(φ)D^(m)在对数Bloch型空间上的本性范数特征。方法利用有界序列{z^(n)}∞n=1刻画对数Bloch型空间上微分复合算子乘积C_(φ)D^(m)的有界性特征,以及泛函分析中的算子理论,例如紧算子性质和对本性范数上下界的估计。结果在C_(φ)D^(m)有界的条件下,给出了微分复合算子C_(φ)D^(m)的本性范数特征,即这里m为非负正整数,微分复合算子乘积为C_(φ)D^(m)f=f(m)°φ。结论在C_(φ)D^(m)有界的条件下,则微分复合算子C_(φ)D^(m)的本性范数可由有界序列{z^(n)}∞n=1的特征刻画。
Objective To characterize the boundedness and essential norms of the product of differentiation and composition operators C_(φ)D^(m)on logarithmic Bloch type spaces.Methods A bounded sequence{z^(n)}∞n=1 was used to characterize the boundedness of the product of differential composite operators C_(φ)D^(m)on logarithmic Bloch type spaces and the operator theory in functional analysis,such as the properties of compact operators.Results The essential norm of the product of differentiation and composition operators C_(φ)D^(m)on the logarithmic Bloch type was obtained.Here m is a nonnegative positive integer,and the product of the differentiation and composition operator C_(φ)D^(m)is defined by C_(φ)D^(m)f=f(m)°φ.Conclusion If the product of differential composite operators C_(φ)D^(m)on logarithmic Bloch type spaces is bounded,the essential norm of C_(φ)D^(m)may be characterized by the characteristics of the bounded sequence{z^(n)}.
作者
周继振
王青青
ZHOU Jizhen;WANG Qingqing(School of mathematics and big data,Anhui University of Science and Technology,Huainan Anhui 232001,China)
出处
《安徽理工大学学报(自然科学版)》
CAS
2024年第3期76-82,共7页
Journal of Anhui University of Science and Technology:Natural Science
基金
国家自然科学基金资助项目(11801347)。
关键词
对数α-Bloch空间
复合算子
微分算子
有界性
本性范数
Logarithmicα-Bloch space
composition operators
differential operator
boundedness
essential norms