期刊文献+

A memory-friendly class-incremental learning method for hand gesture recognition using HD-sEMG

原文传递
导出
摘要 Hand gesture recognition(HGR)plays a vital role in human-computer interaction.The integration of high-density surface electromyography(HD-sEMG)and deep neural networks(DNNs)has significantly improved the robustness and accuracy of HGR systems.These methods are typically effective for a fixed set of trained gestures.However,the need for new gesture classes over time poses a challenge.Introducing new classes to DNNs can lead to a substantial decrease in accuracy for previously learned tasks,a phenomenon known as“catastrophic forgetting,”especially when the training data for earlier tasks is not retained and retrained.This issue is exacerbated in embedded devices with limited storage,which struggle to store the large-scale data of HD-sEMG.Classincremental learning(CIL)is an effective method to reduce catastrophic forgetting.However,existing CIL methods for HGR rarely focus on reducing memory load.To address this,we propose a memory-friendly CIL method for HGR using HD-sEMG.Our approach includes a lightweight convolutional neural network,named SeparaNet,for feature representation learning,coupled with a nearest-mean-of-exemplars classifier for classifi-cation.We introduce a priority exemplar selection algorithm inspired by the herding effect to maintain a manageable set of exemplars during training.Furthermore,a task-equal-weight exemplar sampling strategy is proposed to effectively reduce memory load while preserving high recognition performance.Experimental results on two datasets demonstrate that our method significantly reduces the number of retained exemplars to only a quarter of that required by other CIL methods,accounting for less than 5%of the total samples,while still achieving comparable average accuracy.
出处 《Medicine in Novel Technology and Devices》 2024年第2期124-132,共9页 医学中新技术与新装备(英文)
基金 supported in part by the National Key Research and Development Program of China under Grant 2021YFF1200600 in part by the National Natural Science Foundation of China under Grant 62301523.
  • 相关文献

参考文献3

二级参考文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部