期刊文献+

Enhancing action discrimination via category-specific frame clustering for weakly-supervised temporal action localization

原文传递
导出
摘要 Temporal action localization (TAL) is a task of detecting the start and end timestamps of action instances and classifying them in an untrimmed video. As the number of action categories per video increases, existing weakly-supervised TAL (W-TAL) methods with only video-level labels cannot provide sufficient supervision. Single-frame supervision has attracted the interest of researchers. Existing paradigms model single-frame annotations from the perspective of video snippet sequences, neglect action discrimination of annotated frames, and do not pay sufficient attention to their correlations in the same category. Considering a category, the annotated frames exhibit distinctive appearance characteristics or clear action patterns.Thus, a novel method to enhance action discrimination via category-specific frame clustering for W-TAL is proposed. Specifically,the K-means clustering algorithm is employed to aggregate the annotated discriminative frames of the same category, which are regarded as exemplars to exhibit the characteristics of the action category. Then, the class activation scores are obtained by calculating the similarities between a frame and exemplars of various categories. Category-specific representation modeling can provide complimentary guidance to snippet sequence modeling in the mainline. As a result, a convex combination fusion mechanism is presented for annotated frames and snippet sequences to enhance the consistency properties of action discrimination,which can generate a robust class activation sequence for precise action classification and localization. Due to the supplementary guidance of action discriminative enhancement for video snippet sequences, our method outperforms existing single-frame annotation based methods. Experiments conducted on three datasets (THUMOS14, GTEA, and BEOID) show that our method achieves high localization performance compared with state-of-the-art methods.
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第6期809-823,共15页 信息与电子工程前沿(英文版)
基金 supported by the National Natural Science Foundation of China(No.61672268)。
  • 相关文献

参考文献1

二级参考文献1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部