期刊文献+

基于三节点逆元法与光纤传感器的机翼形态重构方法

Reconstruction Method of Wing Shape Based on Three-node Inverse Finite Element Method and Optical Fiber Sensor
下载PDF
导出
摘要 基于应变信息的飞机机翼结构形态重构技术,可为“仿生式机翼”的气动外形、气弹特性以及隐身性能控制提供数据支撑。为实现对飞机机翼的变形监测,本文提出一种基于三节点逆有限元法和应变信息采集的形态重构方法,并给出相应的光频域反射型分布式光纤传感器布局形式。首先,建立飞机机翼简化模型,开展基于有限元分析结果的形态重构方法仿真验证。其次,构建基于分布式光纤传感器的机翼简化模型应变监测与形态重构试验系统。研究表明,自然下垂工况下,机翼简化模型形态重构相对误差平均值约为4.01%;弯扭组合工况下,机翼简化模型形态重构相对误差平均值约为6.34%。本文所提方法适用于不同载荷工况下飞机机翼变形监测,能够为可变体机翼形态调控与机载共型天线相位补偿提供帮助。 The shape reconstruction technology of aircraft wing structure based on strain information can provide data support for the aerodynamic shape,aeroelastic characteristics and stealth performance control of‘bionic wing’.In order to realize the deformation monitoring of aircraft wings,this paper proposes a morphological reconstruction method based on three-node inverse finite element method and strain information acquisition,and gives the corresponding layout form of optical frequency domain reflective(OFDR)distributed optical fiber sensor.Firstly,a simplified model of aircraft wing is constructed,and the simulation verification of morphological reconstruction method based on finite element analysis results is carried out.Secondly,an experimental system for strain monitoring and shape reconstruction of simplified wing model based on distributed optical fiber sensor is constructed.The results show that the average relative error of the shape reconstruction of the simplified wing model is about 4.01%under the natural droop condition.Under the combined bending and torsion conditions,the average relative error of the shape reconstruction of the simplified wing model is about 6.34%.Therefore,the method proposed in this paper is suitable for aircraft wing deformation monitoring under different load conditions,which can provide help for morphing wing shape control and airborne conformal antenna phase compensation.
作者 岳应萍 赵悦琦 曾捷 王志刚 杨宇 Yue Yingping;Zhao Yueqi;Zeng Jie;Wang Zhigang;Yang Yu(State Key Laboratory of Mechanics and Control for Aerospace Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Aircraft Strength Research Institute of China,Xi’an 710065,China)
出处 《航空科学技术》 2024年第5期101-109,共9页 Aeronautical Science & Technology
基金 国家自然科学基金(52275536,62273179) 航空科学基金(20200009023017,20220028052002) 直升机旋翼动力学国家级重点实验室基金(61422202207)。
关键词 逆有限元法 机翼简化模型 光频域反射型 分布式光纤传感器 形态重构 inverse finite element method simplified wing model OFDR distributed optical fiber sensor morphological reconstruction
  • 相关文献

参考文献3

二级参考文献42

  • 1薛景锋,宋昊,王文娟.光纤光栅在航空结构健康监测中的应用前景[J].航空制造技术,2012,55(22):45-49. 被引量:16
  • 2杜善义,张博明.飞行器结构智能化研究及其发展趋势[J].宇航学报,2007,28(4):773-778. 被引量:31
  • 3Boiler C. Next generation structural health monitoring and its integration into aircraft design [J]. International Journal of Systems Science, 2000, 31(11): 1333-1349.
  • 4Chen X H, Omenzetter P. A framework for reliability as- sessment of an in-service bridge using structural health monitoring data[J]. Key Engineering Materials, 2013, 558: 39-51.
  • 5Auweraer H V D, Peeters B. International research pro- jects on structural health monitoring: an overview[J]. Structural Health Monitoring, 2003, 2(4): 341-358.
  • 6Benedetti 1, Aliahadi M H, Milazzo A. A fast BEM for the analysis of damaged structures with bonded piezoelec- tric sensors[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(9): 490-501.
  • 7Malinowski P, Wandowski T, Ostachowicz W. Damage detection potential of a triangular piezoelectric configura- tion[J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2722-2732.
  • 8Moore E Z, Nichols J M, Murphy K D. Model-based SHM: demonstration of identification of a crack in a thin plate using free vibration data[J]. Mechanical Systems and Signal Processing, 2012, 29(4): 284-295.
  • 9Pohl J, Willberg C, Gabbert U, et al. Experimental and theoretical analysis of Lamb wave generation by piezoce- ramic actuators for structural health monitoring[J]. Ex- perimental Mechanics, 2012, 52(4): 429-438.
  • 10Ostachowicz W, Kudela P, Radzienski M. Guided wave- field images filtering for damage localization[J]. Key En- gineering Materials, 2013, 558: 92-98.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部