期刊文献+

气道及燃烧室对米勒循环发动机性能的影响

Effect of Intake Port and Combustion Chamber on Performance of Miller Cycle Engine
下载PDF
导出
摘要 基于CONVERGE软件对比分析了中、高滚流比进气道及挤气结构对缸内流场及燃烧特性的影响,仿真与试验变化趋势较为一致,结果表明,在2500rpm 1.2MPa工况下,相比高滚流气道,中滚流比气道及挤气方案缸内流场的变强,燃烧特性变好,油耗分别降低0.5%、2.13%;在6000rpm 1.5MPa工况下,中滚流气道流场及燃烧变差,功率降低2.2%,而挤气方案流场降低幅度相对较小,且流场分布相对较好,爆震倾向变好,燃烧相位提前,功率提高4.17%。 Based on the CONVERGE software,the influence of medium and high tumble intake port and squish structure on the flow field and combustion characteristics in the cylinder is compared and analyzed,and the simulation and test trends are more consistent.The results show that under the condition of 2500rpm 1.2MPa,compared with the high tumble port,the in-cylinder flow field of the middle tumble ratio port and the squish scheme becomes stronger,the combustion characteristics become better,and the fuel consumption is reduced by 0.5% and 2.13 % respectively.Under the condition of 6000rpm 1.5MPa,the flow field and combustion of the middle tumble port become worse,and the power is reduced by 2.2%,while the flow field of the squishing scheme is relatively small,and the flow field distribution is relatively good,and the knocking tendency becomes better,the combustion phase is advanced and the power is increased by 4.17%.
作者 赵磊 赵铮 关昊 杨敏敏 李东辉 Zhao Lei;Zhao Zheng;Guan Hao;Yang Min-min;Li Dong-hui(Great Wall Motor Company Limited,Hebei Automobile Engine Technology&Innovation Center,Hebei Baoding 071000)
出处 《内燃机与配件》 2024年第13期27-30,共4页 Internal Combustion Engine & Parts
关键词 进气道 燃烧室 滚流比 CFD分析 燃烧特性 Intake port Combustion chamber Tumble ratio CFD analysis Combustion characteristics
  • 相关文献

参考文献6

二级参考文献34

  • 1John B Heywood, Orian Z Welling. Trends in performance characteristics of modem automobile SI and die- sel engines [C]. SAE Paper 2009-01 - 1892, 2009.
  • 2John B Heywood. Internal combustion engine fundamentals[M]. New York: McGraw-Hill, 1988.
  • 3Xin Jun, Stephen Shih, Edwin Itano. Integeration of 3D simulations and conjugate heat transfer analysis to quantitatively evaluate component temperature [C]. SAE Paper 2003-01-3128, 2003.
  • 4Katsuhiko Miyamoto, Yoshiyuki Hoshiba, Kiyotaka Hosono, et al. Enhancement of combustion by means of squish pistons [J]. Mitsubishi Motors Technical Review, 2006(18). 32-41.
  • 5Takanori Ueda, Takeshi Okumura, Shigeki Sugiura,et al. Effects of squish area shape on knocking in a four- valve spark ignition engine[C]. SAE Paper 1999-01- 1494, 1999.
  • 6Miyagawa H, Kojima S, Katsumi N, et al. Numerical analysis of the effects of squish geometry on a newly developed 4-valve gasoline engine combustion proces[C]// The Fourth International Symposium COMO- DIA98, Japan, 1998: 227-232.
  • 7Adachi S, Horio K, Nakamura Y, et al. Development of toyota 1ZZ-FE engine[C]. SAE Paper 981087, 1998.
  • 8Xu Hongming. Some critical technical issues on the steady flow testing of cylinder heads [C]. SAE Paper 2001-01-1308, 2001.
  • 9Hanjalic K, Popovac M, Hazdizabdic M. A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD[J]. International Journal of Heat and FluidFlow, 2004, 25(6): 1047-105.
  • 10Colin O, Benkenila A, Angelberger. A 3D modeling of mixing, ignition and combustion phenomena in highly stratified gasoline engines[Jl. Oil &Gas Science andTechnology-Rev, IFP, 2003, 58(1): 47-62.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部