期刊文献+

Exploring the Power of Entangled Data in Quantum Machine Learning

原文传递
导出
摘要 Quantum entanglement is a key resource for achieving superiority of quantum computing.Currently,scientists are extensively focusing on how to integrate quantum entanglement into various components of quantum machine learning(QML)models,aiming to surpass the performance of traditional machine learning models.Notable successes include the use of entangled measurements^([1-3])and entangled channels^([4]),which have been shown to reduce query complexity or improve the prediction precision for specified QML tasks.Quantum entangled data,capable of encoding more information compared to classical data of the same size,is recognized for its potential to achieve quantum advantages.Nevertheless,the impact of the entanglement degree in quantum data on model performance remains a challenging and unresolved research question.
出处 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第3期193-194,共2页 武汉大学学报(自然科学英文版)
基金 support from the National Natural Science Foundation of China(U23A20318 and 62276195) support from the National Natural Science Foundation of China(12175003,12361161602) NSAF(U2330201)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部