期刊文献+

基于LHS和正余弦搜索的阿基米德优化算法

Archimedes Optimization Algorithm Based on LHS and Sine-cosine Search
下载PDF
导出
摘要 针对阿基米德优化算法(AOA)寻优过程中存在兼顾全局探索和局部开发能力弱、寻优精度低、易陷入局部最优等问题,提出一种基于LHS和正余弦搜索算子的阿基米德优化算法(LSAOA)。首先,采用拉丁超立方抽样方法初始化种群,提高种群的均衡度和多样性;其次,改变全局搜索与局部搜索的切换模式,提高算法的收敛速度和精度;最后,引入正余弦搜索算子改进局部搜索方式,提高算法的局部搜索开发能力。仿真实验将LSAOA算法与其他改进AOA算法,以及其他元启发式算法在国际通用基准测试函数下进行寻优比较,实验结果表明,LSAOA算法在求解精度和收敛速度等方面具备较好的综合性能。 Aiming at the problems in the optimization process of Archimedes optimization algorithm(AOA),such as the weak ability of global exploration and local development,low optimization accuracy and easy to fall into local optimization,an Archi‐medes optimization algorithm based on LHS and sine-cosine search operator(LSAOA)is proposed.Firstly,Latin hypercube sampling method is used to initialize the population to improve the balance and diversity of the population;Secondly,the switch‐ing mode between global search and local search is changed to improve the convergence speed and accuracy of the algorithm;Fi‐nally,the sine-cosine search operator is introduced to improve the local search mode and improve the local search development ability of the algorithm.The simulation experiment compares lsaoa algorithm with other improved AOA algorithms and other meta heuristic algorithms under the international benchmark function.The experimental results show that lsaoa algorithm has better comprehensive performance in solving accuracy and convergence speed.
作者 詹楷杰 蔡茂国 洪广杰 欧基发 ZHAN Kaijie;CAI Maoguo;HONG Guangjie;OU Jifa(College of Electronic and Information Engineering,Shenzhen University,Shenzhen 518001,China)
出处 《计算机与现代化》 2024年第6期38-42,58,共6页 Computer and Modernization
基金 广东省重点领域研发计划项目(2022B0101010002)。
关键词 阿基米德优化算法 拉丁超立方抽样 正余弦搜索算子 Archimedes optimization algorithm Latin hypercube sampling Sine-cosine search operator
  • 相关文献

参考文献7

二级参考文献65

  • 1张喆,孟庆春,薛任,高云,刘敏,张淑军.一种非线性约束优化的微粒群新算法[J].哈尔滨工业大学学报,2006,38(10):1716-1718. 被引量:8
  • 2Ingber L.Very fast simulated annealing [J].Math Conput Modeling,1989,12:967-973.
  • 3Arts E,Korst J.Simulated annealing and boltzmann machine[M].New York:Wiley & Sons,1989.
  • 4Kirkpatrick S,Gelatt C D,Vecchi M P.Optimization by simulated annealling[J].Science,1983,(220):671-680.
  • 5Fukuyama Y.Fundamentals of particle swarm techniques [A].Lee K Y,El-Sharkawi M A.Modern Heuristic Optimization Techniques With Applications to Power Systems [M].IEEE Power Engineering Society,2002.45~51
  • 6Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources [A].Proceedings of the IEEE Congress on Evolutionary Computation [C].Piscataway,NJ:IEEE Service Center,2001.81~86
  • 7van den Bergh F.An analysis of particle swarm optimizers [D].South Africa:Department of Computer Science,University of Pretoria,2002
  • 8Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm [A].Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics [C].Piscataway,NJ:IEEE Service Center,1997.4104~4109
  • 9Yoshida H,Kawata K,Fukuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability [A].Proceedings of the International Conference on Intelligent System Application to Power System [C].Rio de Janeiro,Brazil,1999.117~121
  • 10Angeline P.Using selection to improve particle swarm optimization [A].Proceedings of IJCNN99[C].Washington,USA,1999.84~89

共引文献516

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部