摘要
针对现有深度学习无数据蒸馏框架下,数据合成效率低下以及蒸馏模型性能不足的问题,提出一种基于元学习的快速数据合成方法。通过批量标准化层的平均值和方差,及动量自适应调整,提取可重用特征,对特定任务执行少量更新,达到提高数据合成效率的目的;通过提出同异构教师鉴别器提取双采样知识,解决数据样本多样性与泛化性问题;改进传统知识蒸馏损失,采用学生自恢复蒸馏,通过一个生成块,提高模型性能。实验结果表明,提出方法优于现有无数据蒸馏方法。
Aiming at the low efficiency of data synthesis and the insufficient performance of distillation model under the existing deep learning framework of data-free distillation,a fast data synthesis method based on meta-learning was proposed.To improve the efficiency of data synthesis,The mean and variance of the batch normalization layer were adaptively adjusted with momentum to extract reusable features and perform minor updates for specific tasks.The heterogeneous teacher discriminator was proposed to extract double sampling knowledge to solve the problem of diversity and generalization of data samples.Using student self-recovery distillation,through a generating block,the performance of the model was improved.Experimental results show that the proposed method is superior to the existing distillation method in the absence of data.
作者
张浩
郭荣佐
成嘉伟
吴建成
贾森泓
ZHANG Hao;GUO Rong-zuo;CHENG Jia-wei;WU Jian-cheng;JIA Sen-hong(College of Computer Science,Sichuan Normal University,Chengdu 610101,China)
出处
《计算机工程与设计》
北大核心
2024年第7期2034-2040,共7页
Computer Engineering and Design
基金
国家自然科学基金项目(11905153、61701331)。
关键词
元学习
模型压缩
无数据
知识蒸馏
数据合成
批归一化
深度学习
meta-learning
model compression
data-free
distillation of knowledge
data synthesis
batch normalization
deep learning