期刊文献+

Reducing Subspaces of Toeplitz Operators Induced by a Class of Non-analytic Monomials over the Unit Ball

原文传递
导出
摘要 In this paper,we describe the minimal reducing subspaces of Toeplitz operators induced by non-analytic monomials on the weighted Bergman spaces and Dirichlet spaces over the unit ball B_(2).It is proved that each minimal reducing subspace M is finite dimensional,and if dim M≥3,then M is induced by a monomial.Furthermore,the structure of commutant algebra v(T_(w)N_(z)N):={M^(*)_(w)NM_(z)N,M^(*)_(z)NM_(w)N}′is determined by N and the two dimensional minimal reducing subspaces of(T_(w)N_(z)N.We also give some interesting examples.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第7期1767-1777,共11页 数学学报(英文版)
基金 Supported by NSFC (Grant Nos. 12031002, 12371134) SDNSFC (Grant Nos. ZR2021MA015, ZR2020MA009)
  • 相关文献

参考文献3

二级参考文献5

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部