期刊文献+

浅海质点振速场强度的深度分布特性

Depth Distribution Characteristics of Particle Velocity Field Intensity in Shallow Sea
下载PDF
导出
摘要 质点振速场强度的深度分布特性对水声探测与估计具有重要影响.基于简正波非相干模态和变换到角度积分的近似条件,推导出质点振速的非相干简正波的角度积分形式,避免了本征值和本征函数的复杂计算,并揭示了质点振速强度在声源深度及对称深度具有显著变化特性的物理机理.数值结果表明:非相干质点振速的角度积分解析式可实现快速计算,并可较好地表征出质点振速强度的深度分布特性;同时,由于简正波模态幅度函数的叠加效应,垂直质点振速与水平质点振速的深度分布存在显著差异性;随后,以质点振速强度差为研究对象,分析了水平距离、声源频率、声速剖面及海水深度等参数对质点振速场强度的深度分布特性的影响.相关结论可为基于矢量场的被动目标深度估计提供理论依据. The depth distribution characteristics of particle velocity field intensity have had a significant impact on underwater acoustic detection and estimation.In this paper,based on the approximate conditions of the incoherent normal modes sum transformation to angular integration,the angular integration form of incoherent normal modes of particle velocity was derived,which avoided the complex calculations of eigenvalues and eigenfunctions while revealing the physical mechanism behind the significant variations in particle velocity intensity with source depth and symmetrical depth.The numerical results demonstrate that the analytical expression of the angular integration of incoherent particle velocity can facilitate fast computation and effectively characterize the depth distribution characteristics of particle velocity intensity.Additionally,due to the superposition effect of the amplitude function of normal modes,there are notable differences in the depth distribution of vertical and horizontal particle velocity.Subsequently,focusing on the intensity difference of particle velocity,the study analyzed the effects of parameters such as horizontal distance,source frequency,sound speed profile,and water depth on the depth distribution characteristics of particle velocity field intensity.The findings provide a theoretical basis for passive target depth estimation based on vector fields.
作者 张海刚 谢金怀 刘佳琪 龚李佳 李智 ZHANG Haigang;XIE Jinhuai;LIU Jiaqi;GONG Lijia;LI Zhi(National Key Laboratory of Underwater Acoustic Technology,Harbin Engineering University,Harbin 150001,China;Key Laboratory of Marine Information Acquisition and Security of the Ministry of Industry and Information Technology,Harbin Engineering University,Harbin 150001,China;College of Underwater Acoustic Engineering,Harbin Engineering University,Harbin 150001,China;Shanghai Marine Electronic Equipment Research Institute,Shanghai 201108,China)
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第7期995-1005,共11页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金(11904292、12174048)资助项目。
关键词 质点振速 深度分布 声源深度 简正波模态叠加 particle velocity depth distribution source depth normal mode superposition
  • 相关文献

参考文献6

二级参考文献52

  • 1TAPPERT F D.The parabolic approximation method in wave propagation and underwater acoustic[M].New York:Springer-Verlag,1977:244-287.
  • 2COLLINS M D.A self-starter for the parabolic equation method[J].J Acoust Soc Am,1992,92,2069-2074.
  • 3COLLINS M D.The stabilized self-starter[J].J Acoust Soc Am,1999,106:1724-1726.
  • 4COLLINS M D.A split-step Pade solution for the parabolic equation method[J].J Acoust Soc Am,1993,93:1736-1742.
  • 5GREENE R R.A high-angle one-way wave equation for seismic wave propagation along rough and sloping interfaces[J].J Acoust Soc Am,1985,77:1991-1998.
  • 6WETTON B T T,BROOKE G H.One-way wave equations for seismoacoustic propagation in elastic waveguides[J].J Acoust Soc Am,1990,87:624-632.
  • 7COLLINS M D.A higher-order parabolic equation for wave propagation in an ocean overlying an elastic bottom[J].J Acoust Soc Am,1989,86:1459-1464.
  • 8COLLINS M D.Higher-order Pade approximations for accurate and stable elastic parabolic equations with application to interface wave propagation[J].J Acoust Soc Am,1991,89:1050-1057.
  • 9COLLINS M D.Generalization of the split-step Pade solution[J].J Acoust Soc Am,1994,96:382-385.
  • 10COLLINS M D.An energy-conserving parabolic equation for elastic media[J].J Acoust Soc Am,1993,94:975-982.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部