期刊文献+

舰船管路布置PG-MACO优化方法

PG-MACO Optimization Method for Ship Pipeline Layout
下载PDF
导出
摘要 针对舰船管路设计效率低下的问题提出一种管路布置优化方法.综合考虑安全性、经济性、协调性和可操作性等工程背景建立优化数学模型,改进蚁群算法在处理混合管路布置工况下的缺陷,提出优化可行解搜索的空间状态转移策略,提升信息素启发效果并加速算法收敛的信息素扩散机制,面向混合管路布置工况设计多蚁群协同进化机制.基于二次开发技术实现本方法在第三方设计软件上的应用,采用核级一回路管道布置工程案例进行验证.结果表明信息素高斯扩散多蚁群优化(PG-MACO)算法的性能和布置效果优于传统蚁群算法,寻路效率提升58.38%,收敛代数缩短43.24%,布置结果中管路长度缩短33.88%,管路折弯次数减少41.67%,验证了本方法的有效性和工程实用性. Aimed at the problem of low efficiency of ship pipeline design,an optimization method of pipeline layout is proposed.An optimization mathematical model is established by comprehensively considering the engineering background of safety,economy,coordination and operability,and the defects of ant colony optimization algorithm in dealing with mixed pipeline layout conditions are improved.A spatial state transition strategy for optimizing feasible solution search,a pheromone diffusion mechanism for improving pheromone inspiration effect and accelerating algorithm convergence are proposed,and a multi-ant colony co-evolution mechanism is designed for mixed pipeline layout conditions.Based on the secondary development technology,the application of this method in the third-party design software is realized,and verified by a nuclear primary pipeline layout project.The results show that the pheromone Gaussian diffusion multi ant colony optimization(PG-MACO)algorithm has a better performance and layout effect than the traditional ant colony algorithm.The routing efficiency is improved by 58.38%,the convergence algebra is shortened by 43.24%,the pipeline length is shortened by 33.88%,and the number of pipeline bends is reduced by 41.67%,which verifies the effectiveness and engineering practicability of the proposed method.
作者 林焰 金庭宇 杨宇超 LIN Yan;JIN Tingyu;YANG Yuchao(School of Naval Architecture and Ocean Engineering,Dalian University of Technology,Dalian 116024,Liaoning,China;State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024,Liaoning,China)
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第7期1027-1035,共9页 Journal of Shanghai Jiaotong University
基金 国家重点实验室专项基金(S18315) 中核绿色建造技术与装备重点实验室开放基金项目(CNNC-STGCL-KFKT-2022-001)。
关键词 舰船管路 布局优化 蚁群优化算法 信息素扩散 ship pipeline layout optimization ant colony optimization algorithm pheromone diffusion
  • 相关文献

参考文献9

二级参考文献61

  • 1樊江,马枚,杨晓光.基于协进化的管路系统智能寻径[J].航空动力学报,2004,19(5):593-597. 被引量:9
  • 2陈志英,樊江,蔡乓乓,王荣桥.基于遗传算法的管路智能敷设应用研究[J].机械科学与技术,2006,25(8):932-934. 被引量:10
  • 3范小宁,林焰,纪卓尚.船舶管路三维布局优化的变长度编码遗传算法[J].中国造船,2007,48(1):82-90. 被引量:31
  • 4Colorni A, Dorigo M, Maniezzo V, etal. Distributed optimization by ant colonies[C]// Proc of the ECAL- 91. Paris: ECAL, 1991:134-142.
  • 5Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions On Systems, Man, and Cybernetics, Part B, 1996, 26 (1): 29-41.
  • 6Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach for the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
  • 7Stutzle T, Hoos H. Max-min ant system[J]. Future Generation Computer Systems, 2000, 16 (8) : 889-914.
  • 8Maniezzo V, Colorni A. The ant system applied to the quadratic assignment problem[J]. IEEE Transactions on Knowledge and Data Engineering, 1999, 11(5) : 769-778.
  • 9Fan Xiao-ning, Lin Yan, Ji Zhuo-shang. The ant colony optimization for ship pipe route design in 3D space[C]// Proceedings of the 6th World Congress on Control and Automation. Dalian China: IEEE Press, 2006: 3103-3108.
  • 10Rosen C D, Belew R K. New methods for eompetive coevolution[J]. Evolutionary Computation, 1998, 5: 1-29.

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部