摘要
随着信息技术的迅猛发展,数据安全问题日益突出,传统加密方法逐渐显露出一些不足。为解决这一问题,研究致力于深度学习在数据加密领域的应用。详细探讨了基于深度学习的数据加密技术的原理,包括自编码器、生成对抗网络和循环神经网络等方法。通过设计和实现基于深度学习的数据加密系统,在数据集和实验环境中进行了应用和评估,重点关注数据的加密和解密过程。研究结果显示,这一系统在提高数据安全性的同时,也具备良好的实用性,为构建更先进、高效的数据加密系统提供了有力支持.
With the rapid development of information technology,the problem of data security is becoming more and more prominent,and traditional encryption methods gradually reveal some shortcomings.In order to solve this problem,this study is devoted to the application of deep learning in the field of data encryption.It discusses the principles of data encryption technology based on deep learning in detail,including methods such as autoencoders,generative adversarial networks and recurrent neural networks.By designing and implementing a data encryption system based on deep learning,this paper applies and evaluates it in datasets and experimental environments,focus⁃ing on the encryption and decryption process of data.Research results show that this system has good practicality while improving data security,which provides strong support for building more advanced and efficient data encryp⁃tion systems.
作者
王丽梅
WANG Limei(Gansu Linxia Middle School,Linxia,Gansu Province,731100 China)
出处
《科技资讯》
2024年第11期83-86,共4页
Science & Technology Information
关键词
深度学习
数据加密
自编码器
生成对抗网络
循环神经网络
Deep learning
Data encryption
Autoencoder
Generative adversarial network
Recurrent neural network