期刊文献+

基于ELM锂离子电池RUL预测优化方法研究

Research on RUL Predictive Optimization Method Based on ELM Lithium-Ion Battery
下载PDF
导出
摘要 针对传统的极限学习机ELM(Extreme Learning Machine)算法对锂离子电池剩余使用寿命RUL(Remaining Useful Life)的预测效果不准确等问题,提出通过考察循环次数基础数据导入值对预测结果的影响,及通过集成度调整即前期降低算法RUL估计的频率,后期提高算法集成度和RUL估计的频率,进一步提高锂离子电池RUL预测的准确性。结果表明该方法具有测试时间短和误差小等优点,可为锂离子电池检测机构及生产企业提供一种更加快捷及低成本的电池剩余使用寿命或循环寿命测试方案。 In view of the inaccurate prediction effect of the traditional Extreme Learning Machine(ELM)algorithm on the Remaining Useful Life(RUL)of lithium-ion battery,this paper proposes to investigate the influence of the basic data import value of the number of cycles on the prediction result.Through integration adjustment,the frequency of RUL estimation is reduced in the early stage,and the frequency of algorithm integration and RUL estimation is increased in the later stage,so as to further improve the accuracy of RUL prediction of lithium-ion batteries.The results show that this method has the advantages of short test time and small error,and can provide a more rapid and lowcost testing scheme for the remaining service life or cycle life of lithium-ion battery.
作者 于小芳 陈苏声 周怡 YU Xiao-fang;CHEN Su-sheng;ZHOU Yi(Shanghai Institute of Quality Inspection and Technology Research,National Smart Grid Distributed Power Supply Equipment Quality Supervision and Inspection Center(Shanghai),Shanghai 201114)
出处 《环境技术》 2024年第6期143-147,共5页 Environmental Technology
基金 上海市市场监督管理局资助,碳中和背景下锂电池循环寿命预测方法研究,项目编号:2023-33。
关键词 极限学习机ELM 剩余使用寿命RUL 集成度调整 锂离子电池 extreme learning machine ELM remaining useful life RUL integration adjustment lithiumion battery
  • 相关文献

参考文献8

二级参考文献73

  • 1王海燕,杨方廷,刘鲁.标准化系数与偏相关系数的比较与应用[J].数量经济技术经济研究,2006,23(9):150-155. 被引量:99
  • 2Federico B R, Roberto S. Performance comparison of ac- tive balancing techniques for Lithiumion batteries I J]. Journal of Power Sources, 2014 (267) : 603-609.
  • 3Thanh H P, Alexandre C, Jean Chiristophe C. An opti- mized topology for next-to-next balancing of series-con- nected Lithium-ion cells[J]. IEEE Transactions on Power Electronics, 2014,29 (9) :4603-4613.
  • 4Ngoc N,Sai K O,Kyungmin N. An adaptive backward control battery equalization system for serially connected Lithium-ion battery packs [Jl. IEEE Transactions on Ve- hicular Technology, 2014,63 ( 8 ) : 3651-3660.
  • 5Markus E,Werner R,Juergen F. Improved performance of serially connected Li-ion batteries with active cell balanc- ing in electirc vehicles [J ]. IEEE Transactions on Vehicu- lar Technology, 2011,60 (6) : 2448-2457.
  • 6Lee Yuangshung,Cheng Mingwang. Intelligent control bat- tery equalization for series connected lithium-Ion battery strings [J ]. IEEE Transactions on Industrial Elecrionics, 2005,52(5) : 1297-1307.
  • 7Kim Moonyoung,Kim Junho,Moon Gunwoo. Center-cellconcentration structure of a cell-to-cell balancing circuit with a reduced number of switches [J]. IEEE Transactions on Power Electronics, 2014,29 (10) : 5285-5297.
  • 8HEI W, WILLIARD N, OSTERMAN M, et al. Prognos- tics of lithium-ion batteries based on Dempster-Shaier theory and the Bayesian Monte Carlo method [ J]. J Power Sources, 2011, 196(23):10314-10321.
  • 9LEE S, KIM J, LEE J, et al. State-of-charge and ca- pacity estimation of lithium-ion battm7 using a new open-circuit voltage versus state-of-charge E j]. Journal of Power Sources, 2008, 185(2) : 1376-1373.
  • 10XING Y J, EDEN W M, KWOK-LEUNG M T, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries [ J]. Microelectron- ics Reliability, 2013, 53(6): 811-820.

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部