摘要
针对传统自编码器以无监督方式学习特征、缺乏监督信息的指导造成特征判别性弱的问题,提出一种簇紧凑自编码器(cluster compact auto-encoder,CCAE).首先,利用模糊C均值算法对样本进行聚类得到伪标签,并通过PBMF指标确定最佳聚类数;然后,利用伪标签构建簇紧凑正则项,嵌入样本所属类别的判别性信息;最后,将簇紧凑正则项与标准自编码器的损失函数相结合作为CCAE的损失函数,所提出的CCAE通过伪标签的方式嵌入区分类别的判别性信息,可增强特征的判别性,从而显著提升诊断性能;最后,在旋转机械齿轮和轴承数据集上验证所提出方法的有效性,结果表明,CCAE可广泛用于旋转机械故障诊断的特征提取阶段,为工程人员实现判别性特征的自动提取提供一种解决方案.
To deal with the problem that features learned by a traditional auto-encoder(AE)are less discriminative due to unsupervised manner,we propose a cluster compact auto-encoder(CCAE).First of all,a fuzzy C-means algorithm is used to cluster samples to get pseudo labels,where the optimal number of clusters is determined by the PBMF index.Then,a cluster compact regularization(CCR)is established based on the pseudo labels,which embeds discriminant information indicating categories of samples.Finally,the CCR is combined with the AE to constitute the CCAE’s loss function.Discriminant ability of the proposed method can be enhanced via the pseudo labels that incorporate discriminant information indicating categories,so as to improve the diagnostic performance greatly.The effectiveness of the proposed method is verified on rotating machinery gear and bearing datasets.The proposed CCAE can be widely applicable to the feature extraction stage of rotating machinery fault diagnosis,which provides a solution for engineers to realize automatic extraction of discriminative features.
作者
张志强
储昭碧
陈立平
杨清宇
ZHANG Zhi-qiang;CHU Zhao-bi;CHEN Li-ping;YANG Qing-yu(School of Electrical Engineering and Automation,Hefei University of Technology,Hefei 230009,China;School of Automation Science and Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
出处
《控制与决策》
EI
CSCD
北大核心
2024年第7期2251-2258,共8页
Control and Decision
基金
中央高校基本科研业务费专项资金项目(JZ2023HGQA0108,JZ2023HGTA0200)
国家自然科学基金面上项目(62073114,11971032)
安徽省科技重大专项项目(202103a05020001)。
关键词
旋转机械
故障诊断
特征提取
自编码器
模糊C均值
伪标签
rotating machinery
fault diagnosis
feature extraction
auto-encoder
fuzzy C-means
pseudo labels