期刊文献+

Surface decoration of mesocarbon microbeads with multifunctional TiNbO_(4-x)@C coating layer as high rate and stable anode of Li-ion batteries

原文传递
导出
摘要 Surface modification of graphite anode with electroactive matters has been proven of a more practical strategy in enhancing the performance of Li-ion batteries than exploring alternative novel anode materials.Herein,rutile TiNbO_(4-x) nanoparticles with a tunnel structure are employed as multifunctional decoration substances in combination with a carbon coating layer to improve the rate and cycle properties of mesocarbon microbeads(MCMBs).As compared to pristine MCMB,the Li^(+)diffusion coefficients of the composite anodes are enhanced due to the synergistic effect of TiNbO_(4-x)@C.Meanwhile,the overcharge and voltage polarization of the composite anodes at high rate are obviously minimized due to the current sharing effect of the high-potential TiNbO_(4-x).Moreover,the amorphous Li_(y)TiNbO_(4-x) converted from TiNbO_(4-x) in the initial lithiation process can deliver pseudocapacitive capacity to the composite anodes from the second cycle.All of these functions of TiNbO_(4-x)@Ccoating layer have directly contributed to the improved rate and cycle performance of the MCMB/TiNbO_(4-x)@C composite anodes.The one containing 12.0 wt%TiNbO_(4-x) exhibits a high reversible specific capacity of 118 m Ah·g^(-1)at 10C(1C=372 m A·g^(-1)),together with a high capacity retention of 90.9%after 300 cycles at 3C,which are all much superior to those of pristine MCMB.
出处 《Rare Metals》 SCIE EI CAS CSCD 2024年第5期2053-2066,共14页 稀有金属(英文版)
基金 supported by the Natural Science Foundation Project of Fujian Province(Nos.2020J01287 and 2020H0024)。
  • 相关文献

参考文献6

二级参考文献18

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部