摘要
Sb-based materials exhibit considerable potential for sodium-ion storage owing to their high theoretica capacities.However,the bulk properties of Sb-based materials always result in poor cycling and rate performances.To overcome these issues,pyridine-regulated Sb@InSbS_(3)ultrafine nanoplates loaded on reduced graphene oxides(Sb@InSbS_(3)@rGO)were designed and synthesized.During the synthesis process,pyridine was initially adopted to coordinate with In^(3+),and uniformly dispersed In_(2)S_(3)ultrafine nanoplates on reduced graphene oxide were generated after sulfidation.Next,partial In^(3+)was exchanged with Sb^(3+),and Sb@InSbS_(3)@rGO was obtained by using the subsequent annealing method.The unique structure of Sb@InSbS_(3)@rGO effectively shortened the transfer path of sodium ions and electrons and provided a high pseudocapacitance.As the anode in sodium-ion batteries,the Sb@InSbS_(3)@rGO electrode demonstrated a significantly higher reversible capacity better stability(445 m Ah·g^(-1)at 0.1 A·g^(-1)after 200 cycles and 212 mAh·g^(-1)at 2 A·g^(-1)after 1200 cycles),and superior rate(210 mAh·g^(-1)at 6.4 A·g^(-1))than the electrode without pyridine(355 mAh·g-1at 0.1 A·g-1after 55 cycles and 109 mAh·g^(-1)at 2 A·g^(-1)after 770 cycles)Furthermore,full cells were assembled by using the Sb@InSbS_(3)@rGO as anode and Na_(3)V_(2)(PO_(4))_(3)as cathode which demonstrated good cycling and rate performances and exhibited promising application prospects.These results indicate that adjusting the microstructure of electrode materials through coordination balance is A·good strategy for obtaining high-capacity,high-rate,and longcycle sodium storage performances.
出处
《Rare Metals》
SCIE
EI
CAS
CSCD
2024年第5期2080-2092,共13页
稀有金属(英文版)
基金
supported by the National Natural Science Foundation of China(Nos.42007138,51772082 and 51804106)
the Natural Science Foundation of Hunan Province(No.2023JJ10005).