摘要
Cobalt selenide(CoSe_(2))has garnered considerable attention as a prospective anode candidate for advanced lithium-ion storage,prompting comprehensive investigations.However,CoSe_(2)-based anodes usually suffer from significant volume variation upon lithiation leading to unsatisfactory cycling stability.Herein,a versatile synthesis route is proposed for the in-situ fabrication of CoSe2nanoparticles embedded in N-dope carbon skeleton(CoSe_(2)@NC)through annealing treatment and selenization of a metal–organic framework-derived(MOF)precursor.The N-doped carbon derived from the MOF serves not only as an excellent conductive substrate but also as a confined reactor,effectively inhibiting the structural instability and alleviating the inevitable volume change of CoSe_(2).Owing to their unique nanostructure,the as-prepared CoSe_(2)@NC exhibits a high capacity of 745.9mAh·g^(-1)at 0.1 A·g^(-1),while maintaining excellent rate capability and an impressive lifespan.Furthermore,the assembled lithium-ion capacitor(LIC)based on CoSe_(2)@NC demonstrates an energy density of 130Wh·kg^(-1),a power density of 24.6 kW·kg^(-1),and remarkable capacity retention of 90.8%after 8000 cycles.These results highlight the great potential of CoSe_(2)@NC for practical applications.
出处
《Rare Metals》
SCIE
EI
CAS
CSCD
2024年第5期2150-2160,共11页
稀有金属(英文版)