期刊文献+

Recent progress of Pt-based oxygen reduction reaction catalysts for proton exchange membrane fuel cells

原文传递
导出
摘要 With the increasing consumption of fossil fuels,proton exchange membrane fuel cells(PEMFCs)have attracted considerable attention as green and sustainable energy conversion devices.The slow kinetics of the cathodic oxygen reduction reaction(ORR)has a major impact on the performance of PEMFCs,and although platinum(Pt)can accelerate the reaction rate of the ORR,the scarcity and high cost of Pt resources still limit the development of PEMFCs.Therefore,the development of low-cost high-performance ORR catalysts is essential for the commercial application and development of PEMFCs.This paper reviews the research progress of researchers on Pt-based ORR catalysts in recent years,including Pt/C catalysts,Pt-based alloy catalysts,Pt-based intermetallic compounds,and Pt-based single-atom catalysts(SACs),with a focus on Pt-based alloy catalysts with different nanostructures.We described in detail the difficulties and solutions in the research process of various ORR catalysts and explained the principle of their activity enhancement with density functional theory(DFT).In addition,an outlook on the development of Pt-based catalysts is given,and reducing the amount of Pt used and improving the performance of catalysts are the directions to work on in the coming period.
出处 《Rare Metals》 SCIE EI CAS CSCD 2024年第6期2444-2468,共25页 稀有金属(英文版)
基金 supported by CITIC Dameng Mining Industries Limited-Guangxi University Joint Research Institute of Manganese Resources Utilization and Advanced Materials Technology,Guangxi University-CITIC Dameng Mining Industries Limited Joint Base of Postgraduate Cultivation,and State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures the National Natural Science Foundation of China(Nos.11364003 and 52102470) Guangxi Innovation Driven Development Project Grant(Nos.AA17204100 and AA18118052) the Natural Science Foundation of Guangxi Province(No.2018GXNSFAA138186)。
  • 相关文献

参考文献34

二级参考文献54

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部