期刊文献+

In situ meso-tetra(4-carboxyphenyl)porphyrin ligand substitution in Hf-MOF for enhanced catalytic activity and stability in photoredox reactions

原文传递
导出
摘要 Though there are numerous intrinsic merits of metal-organic frameworks(MOFs),low charge separation efficiency has imposed heavy restrictions on their photocatalytic application.Herein,in situ porphyrin ligand substitution,as a strategy for improving the charge separation efficiency and increasing the amounts of active sites,has been designed and realized in a Hf-biphenyl dicarboxylic acid(BPDC)MOF.Specifically,a size and geometry matched meso-tetra(4-carboxyphenyl)porphyrin(TCPP)ligand was selected and doped into Hf-BPDC MOF by forming coordinating bonds with Hf centers,forming dualligand Hf-BPDC-TCPP MOF.The resultant Hf-BPDC-TCPP MOF showed significantly improved activity and chemical stability in the photocatalytic H_(2)generation(261μmol·g^(-1)·h^(-1))and tetracycline(TC)degradation reactions(95.8%),which was 48 and 1.47 folds higher than that of the Hf-BPDC MOF.Photophysical and electrochemical studies revealed that the introduction of porphyrin ligand could generate a stronger internal electric field for boosting the charge separation and transfer,increase the specific surface area for providing more active sites,and narrow the band gap to enhance the visible light absorption.This in situ ligand substitution method provides a promising approach to build a tunable platform for constructing high-performance MOF photocatalysts.
出处 《Rare Metals》 SCIE EI CAS CSCD 2024年第6期2682-2694,共13页 稀有金属(英文版)
基金 financially supported by the National Nature Science Foundation of China(Nos.22102064 and 21972058) supported by the Open Project Program of Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants,Putian University。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部