期刊文献+

Model-free method for LQ mean-field social control problems with one-dimensional state space

原文传递
导出
摘要 This paper presents a novel model-free method to solve linear quadratic(LQ)mean-field control problems with one-dimensional state space and multiplicative noise.The focus is on the infinite horizon LQ setting,where the conditions for solution either stabilization or optimization can be formulated as two algebraic Riccati equations(AREs).The proposed approach leverages the integral reinforcement learning technique to iteratively solve the drift-coefficient-dependent stochastic ARE(SARE)and other indefinite ARE,without requiring knowledge of the system dynamics.A numerical example is given to demonstrate the effectiveness of the proposed algorithm.
出处 《Control Theory and Technology》 EI CSCD 2024年第3期479-486,共8页 控制理论与技术(英文版)
  • 相关文献

参考文献1

二级参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部