期刊文献+

递归原理的思维特性及其数学应用

Theoretical Analysis and Practical Attempt of Recursion Principle
下载PDF
导出
摘要 递归原理的基本思想隐含于数学知识或解题过程中,构造递归结构是运用递归方法进行解题的关键步骤,也凸显了递归方法解题的策略性和技巧性。递归原理具有结构化、条件性、有限性和辩证性等思维特性,在数学实践中,结合数学课程内容,通过强化递归原理的数学观念、思想方法、策略模式等进行解题思维训练,可引导学生达成思维自控,不断提升思维能力,完善数学认知结构。 The basic idea of recursion principle is implicit in mathematical knowledge and problem-solving process.Constructing a recursive structure is the key step in using recursive method to solve problems.It is also the strategy and technique of recursion in problem-solving.Characterized with structuring,conditionality,finiteness and dialectic,recursion principle can be used to train and develop students’thinking ability effectively by strengthening the mathematical concepts,thinking methods,and strategic models underlying the recursive principle.Thus,the teaching approach can gradually move from teacher-led thinking to student self-control thinking,and students’thinking ability and cognitive structure of mathematics can be constantly improved.
作者 王罡 WANG Gang(Department of Quality Education,Nanjing Vocational College of Information and Technology,Nanjing 210023,China)
出处 《南通职业大学学报》 2024年第2期59-63,共5页 Journal of Nantong Vocational University
基金 南京信息职业技术学院高层次人才科研项目(YB20200906)。
关键词 递归原理 数学思维 解题训练 recursion principle mathematical thinking problem-solving training
  • 相关文献

参考文献5

二级参考文献25

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部