期刊文献+

面向遥感图像场景分类的LAG-MANet模型 被引量:1

LAG-MANet model for remote sensing image scene classification
下载PDF
导出
摘要 遥感图像分类过程中,局部信息与全局信息至关重要。目前,遥感图像分类的方法主要包括卷积神经网络(CNN)及Transformer。CNN在局部信息提取方面具有优势,但在全局信息提取方面有一定的局限性。相比之下,Transformer在全局信息提取方面表现出色,但计算复杂度高。为提高遥感图像场景分类性能,降低复杂度,设计了LAG-MANet纯卷积网络。该网络既关注局部特征,又关注全局特征,并且考虑了多尺度特征。输入图像被预处理后,首先采用多分支扩张卷积模块(MBDConv)提取多尺度特征;然后依次进入网络的4个阶段,在每个阶段采用并行双域特征融合模块(P2DF)分支路提取局部、全局特征并进行融合;最后先经过全局平均池化、再经过全连接层输出分类标签。LAG-MANet在WHU-RS19数据集、SIRI-WHU数据集及RSSCN7数据集上的分类准确率分别为97.76%、97.04%、97.18%。试验结果表明,在3个具有挑战性的公开遥感数据集上,LAG-MANet更具有优越性。 In the process of remote sensing image classification,both local and global information are crucial.At present,the methods for remote sensing image scene classification mainly include convolutional neural networks(CNN)and Transformers.While CNN has advantages in extracting local information,it has certain limitations in extracting global information.Compared with CNN,Transformer performs well in extracting global information,but has high computational complexity.To improve the performance of scene classification for remote sensing images while reducing complexity,a pure convolutional network called LAG-MANet is designed.This network focuses on both local and global features,taking into account multiple scales of features.Firstly,after inputting the pre-processed remote sensing images,multi-scale features are extracted by a multi-branch dilated convolution block(MBDConv).Then it enters four stages of the network in turn,and in each stage,local and global features are extracted and fused by different branches of the parallel dual-domain feature fusion block(P2DF).Finally,the classification labels are pooled by global average before being output by the fully connected layer.The classification accuracy of LAG-MANet is 97.76%on the WHU-RS19 dataset,97.04%on the SIRI-WHU dataset and 97.18%on the RSSCN7 dataset.The experimental results on three challenging public remote sensing datasets show that the LAG-MANet proposed in this paper is superior.
作者 王威 郑薇 王新 WANG Wei;ZHENG Wei;WANG Xin(School of Computer and Communication Engineering,Changsha University of Science and Technology,Changsha 410114,China)
出处 《测绘学报》 EI CSCD 北大核心 2024年第7期1371-1383,共13页 Acta Geodaetica et Cartographica Sinica
基金 国家重点行动计划(6240XXX0206) 国防科技创新特区项目(2019XXX00701) 湖南省重点研究开发(2020SK2134) 湖南省自然科学基金(2019JJ80105 2022JJ30625) 长沙市科技计划(kq2004071)。
关键词 遥感图像 场景分类 CNN LAG-MANet remote sensing image scene classification CNN LAG-MANet
  • 相关文献

参考文献4

二级参考文献26

共引文献63

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部