期刊文献+

基于生物信息学的蛋白质功能预测方法研究进展 被引量:1

Advances in bioinformatics-based protein function prediction
原文传递
导出
摘要 随着计算能力的增加和生物数据的快速扩展,利用生物信息学解决一些生物学问题逐渐成为主流的解决方案。蛋白质功能预测是生物医学和药物研究领域的重要任务。利用生物信息学进行蛋白质功能预测成为研究热点。本文将基于生物信息学的蛋白质功能预测方法归纳为3类:基于蛋白质序列的方法、基于蛋白质结构的方法和基于蛋白质相互作用网络的方法,并进一步分析和总结了这些方法的具体算法以及最新研究进展,为生物医学和药物研究领域深入探索预测蛋白质功能提供重要参考。 With the increasing of computer power and rapid expansion of biological data,the application of bioinformatics tools has become the mainstream approach to address biological problems.The accurate identification of protein function by bioinformatics tools is crucial for both biomedical research and drug discovery,making it a hot topic of research.In this paper,we categorize bioinformatics-based protein function prediction methods into three categories:protein sequence-based methods,protein structure-based methods,and protein interaction networks-based methods.We further analyze these specific algorithms,highlighting the latest research advancements and providing valuable references for the application of bioinformatics-based protein function prediction in biomedical research and drug discovery.
作者 何新媛 刘杨 曾祥荷 高荣凤 田真 樊祥宇 HE Xinyuan;LIU Yang;ZENG Xianghe;GAO Rongfeng;TIAN Zhen;FAN Xiangyu(School of Information Science and Engineering,University of Jinan,Jinan 250022,Shandong,China;School of Biological Science and Technology,University of Jinan,Jinan 250022,Shandong,China;Joint Laboratory for Translational Medicine Research,Liaocheng City People’s Hospital,Liaocheng 252000,Shandong,China)
出处 《生物工程学报》 CAS CSCD 北大核心 2024年第7期2087-2099,共13页 Chinese Journal of Biotechnology
基金 国家自然科学基金(31600148) 山东省自然科学基金(ZR2021MC018)。
关键词 生物信息学 蛋白质功能预测 基因本体论 机器学习 深度学习 bioinformatics protein function prediction gene ontology machine learning deep learning
  • 相关文献

参考文献2

二级参考文献60

  • 1黄勇,蒋波,徐一,顾建新.用DSA分析血清转铁蛋白诊断肝癌[J].上海医科大学学报,1994,21(4):249-252. 被引量:5
  • 2李力,杨秉辉,李溪冰,江松敏,顾建新.不同肝病病人血清转铁蛋白糖链的变化[J].中华肝脏病杂志,1996,4(3):148-150. 被引量:1
  • 3sBRANDEN C, TOOZE J. Introduction to Protein Structure[ M]. New York : Garland Pub, 1999.
  • 4LODISH H, BERK A, KAISER C A, et al. Molecular Cell Biology [ M] .7th ed. New York: WH Freeman and Company, 2012.
  • 5ROSENBERG I M. Protein analysis and purification: benchtop techniques[ M]. 2th ed. Boston: Birkhauser ,2005.
  • 6ULE J, JENSEN K B, RUGGIU M, et al. CLIP identified Nova- regulated RNA networks in the brain [ J ]. Science, 2003, 302 (5648) : 1212-1215.
  • 7YOUNG K H. Yeast two-hybrid: so many interactions, (in) so little time[J]. Biology of Reproduction, 1998, 58 (2) : 302-311.
  • 8ROST B, LIU J, WRZESZCZYNSKI K O, et al. Automatic prediction of protein function [ J ]. Cellular & Molecular Life Sciences Cmls, 2003, 60 (12) : 2637-2650.
  • 9ASHBURNER M. Gene ontology: tool for the unification of biology [J]. Nature Genetics, 2000, 25(1) :25-29.
  • 10TETKO I, RODCHENKOV I, WALTER M, et al. Beyond the "best" match: Machine learning annotation of protein sequences by integration of different sources of information [ J ]. Bioinformatics, 2008, 24(5) :621-628.

共引文献4

同被引文献13

引证文献1

  • 1孔建强,《生物工程学报》编委.导读[J].生物工程学报,2024,40(7).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部