摘要
目的 探讨磁共振磁敏感成像(SWI)联合经颅黑质超声(TCS)在帕金森病(PD)中的诊断价值。方法 选择2021年1月~2023年12月就诊于佛山市第一人民医院的PD患者42例作为PD组,选取同期43例健康志愿者作为对照组,两组均行SWI及TCS检查,观察中脑黑质部“燕尾征”消失情况,TCS中黑质高回声面积、中脑面积、黑质高回声/中脑面积比(S/M),分析组间差异;将差异有统计学意义的指标纳入多因素Logistic回归分析,筛选PD发生的独立预测因素并构建预测模型,通过列线图进行可视化。采用ROC曲线、校准曲线和决策曲线分析评价模型的区分度、校准度和临床实用价值。结果 PD组与正常组黑质高回声面积(P<0.001)、黑质高回声与中脑面积的比值(P<0.001)的差异有统计学意义。单纯SWI、TCS在鉴别PD组、对照组中的AUC值分为0.80(95%CI:0.716~0.886)、0.857(95%CI:0.774~0.940)。多因素Logistic回归分析显示黑质高回声面积、燕尾征是预测PD发生的独立风险因素。基于上述独立预测因素构建PD风险预测模型,AUC值为0.94(95%CI:0.896~0.984),校正曲线显示预测概率与实际概率具有良好的一致性。决策曲线分析显示预测模型较单一模型,体现出更高的净获益。结论 联合SWI和TCS定量指标的预测模型对PD发生风险具有良好的预测能力,预测效能高于任意单一指标,具有良好的临床实用性。
Objective To explore the diagnostic value of susceptibility-weighted imaging(SWI)combining transcranial sonography(TCS)in Parkinson's disease(PD).Methods Forty-two PD patients treated at the First People’s Hospital of Foshan from January 2021 to December 2023 were selected as the PD group,while 43 healthy volunteers served as the control group.All subjects underwent SWI and TCS examinations to observe the disappearance of the"swallow tail sign"in the midbrain substantia nigra.Differences in the hyperechoic area of the substantia nigra(SN),midbrain area,and the S/M values were analyzed between the groups.Statistically significant indicators were subjected to multivariate logistic regression analysis to identify independent predictors of PD and construct a predictive model,which was visualized using a nomogram.The model's discriminative ability,calibration,and clinical utility were evaluated using ROC curves,calibration curves,and decision curve analysis,respectively.Results There were significant differences in the hyperechoic area of the SN(P<0.001)and the S/M ratio(P<0.001)between the PD group and the control group.The AUC for SWI and TCS separately in distinguishing PD from control group were 0.80(95%CI:0.716-0.886)and 0.857(95%CI:0.774-0.940),respectively.Multivariate Logistic regression analysis showed that the hyperechoic area of SN and the swallow tail sign as independent risk factors for predicting PD.The predictive model constructed using these factors had an AUC value of 0.94(95%CI:0.896-0.984).The calibration curve demonstrated good agreement between predicted and actual probabilities,and decision curve analysis showed that the predictive model provided a higher net benefit than individual indicators.Conclusion The predictive model combining SWI and TCS quantitative indicators demonstrates good predictive capability for PD risk,surpassing any single model and showing promising clinical utility.
作者
成东亮
段振鹏
吴耀忠
王航
马锦成
黄淑英
文戈
丁楠
赵海
CHENG Dongliang;DUAN Zhenpeng;WU Yaozhong;WANG Hang;MA Jincheng;HUANG Shuying;WEN Ge;DING Nan;ZHAO Hai(Department of Radiology,The First People's Hospital of Foshan,Foshan 528000,China;Department of Neurology,The First People's Hospital of Foshan,Foshan 528000,China;Medical Imaging Center,Nanfang Hospital of Southern Medical University,Guangzhou 510515,China)
出处
《分子影像学杂志》
2024年第7期695-701,共7页
Journal of Molecular Imaging
基金
佛山市卫生健康局医学科研项目(20220809A010293)
佛山市“十四五”高水平医学重点专科项目(FSGSP145036)。
关键词
磁敏感成像
经颅黑质超声
列线图
帕金森病
susceptibility weighted imaging
transcranial sonography
Nomogram
Parkinson's disease