期刊文献+

The Logarithmic Sobolev Inequality for a Submanifold in Manifolds with Nonnegative Sectional Curvature

原文传递
导出
摘要 The authors prove a sharp logarithmic Sobolev inequality which holds for compact submanifolds without boundary in Riemannian manifolds with nonnegative sectional curvature of arbitrary dimension and codimension.Like the Michael-Simon Sobolev inequality,this inequality includes a term involving the mean curvature.This extends a recent result of Brendle with Euclidean setting.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2024年第3期487-496,共10页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(No.12271163) the Science and Technology Commission of Shanghai Municipality(No.22DZ2229014) Shanghai Key Laboratory of PMMP.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部