期刊文献+

带两个趋化参数的趋化性模型在一维空间中整体解的一致有界性

Existence and Uniform Boundedness of Global Solutions in One Dimension Space of a Chemotaxis System with Two Sensitive Coefficients
原文传递
导出
摘要 研究带两个趋化参数的趋化模型在一维空间中整体解的存在性和一致有界性.利用Amann理论得到方程组解的局部存在性,进而利用解析半群理论和能量方法及细致的先验估计,证明了方程组在一维空间中整体解的存在性和一致有界性. The existence and boundednesss of global solutions in one dimension space of a chemotaxis system with two sensitive coefficients are investigated.Applying Amann theory,the local existence of solutions of the system is obtained.Furthermore,by using analytic semigroup theory,energy methods and the detailed priori estimates of solutions,it's proved that the existence and boundednesss of global solutions in one dimension space of the system.
作者 赵烨 王丽伟 徐茜 Zhao Ye;Wang Liwei;Xu Qian(Zhiyuan College,Beijing Institute of Petrochemical Technology,Beijing 102617,China;Institute of Mathematics and Physic,Beijing Union University,Beijing 100101,China)
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期82-87,共6页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 Supported by the National Natural Science Foundation of China(11871048) Scientific Research Program of Beijing Municipal Education Commission(KM202011417010)。
关键词 整体解 存在性 一致有界性 global solution existence boundednesss
  • 相关文献

参考文献1

二级参考文献10

  • 1KELLER E, SEGEL L. Initiation of Slime Mold Aggregation Viewed as an Instability [J]. J Theoret Biol, 1970, 26: 399-415.
  • 2MIMURA M, TSUJIKAWA T. Aggregating Pattern Dynamics in a Chemotaxis Model Including Growth [J]. Physica A, 1996, 230. 499-543.
  • 3WANG X, XU Q. Spiky and Transition Layer Steady States of Chemotaxis Systems via Global Bifurcation and Helly's Compactness Theorem[J]. J Math Biol, 2013, 66: 1241- 1266.
  • 4WINKLER M. Absence of Collapse in a Parabolic Chemotaxis System with Signal Dependent Sensitivity [J]. Mathema- tische Nachrichten, 2010, 283: 1664-1673.
  • 5HILLEN T, PAINTER K. Volume Filling and Quorum Sensing in Models for Chemosensitive Movement [J]. Canadian Applied Mathematics Quarterly, 2002, 10 : 501- 543.
  • 6CRANDALL M, RABLNOWITZ P. Bifurcation from Simple Eigenvalues [J]. J Functional Analysis, 1971, 8: 321- 340.
  • 7SHI J, WANG X. On the Global Bifurcation for Quasilinear Elliptic Systems on Bounded Domains [J]. J Diff Eqs, 2009, 246: 2788-2812.
  • 8叶志勇,豆中丽,夏书银,马文文.具有离散-时间捕食-食饵模型的稳定性和Neimark-Sacker分支[J].西南大学学报(自然科学版),2013,35(9):80-87. 被引量:1
  • 9罗万成.具时滞Logistic型竞争模型的全局吸引性[J].西南师范大学学报(自然科学版),2001,26(3):237-242. 被引量:4
  • 10周军.一类具有修正的Leslie-Gower功能函数的捕食-食饵模型的全局渐近稳定性[J].西南大学学报(自然科学版),2014,36(7):53-57. 被引量:4

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部