摘要
研究带两个趋化参数的趋化模型在一维空间中整体解的存在性和一致有界性.利用Amann理论得到方程组解的局部存在性,进而利用解析半群理论和能量方法及细致的先验估计,证明了方程组在一维空间中整体解的存在性和一致有界性.
The existence and boundednesss of global solutions in one dimension space of a chemotaxis system with two sensitive coefficients are investigated.Applying Amann theory,the local existence of solutions of the system is obtained.Furthermore,by using analytic semigroup theory,energy methods and the detailed priori estimates of solutions,it's proved that the existence and boundednesss of global solutions in one dimension space of the system.
作者
赵烨
王丽伟
徐茜
Zhao Ye;Wang Liwei;Xu Qian(Zhiyuan College,Beijing Institute of Petrochemical Technology,Beijing 102617,China;Institute of Mathematics and Physic,Beijing Union University,Beijing 100101,China)
出处
《南开大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第3期82-87,共6页
Acta Scientiarum Naturalium Universitatis Nankaiensis
基金
Supported by the National Natural Science Foundation of China(11871048)
Scientific Research Program of Beijing Municipal Education Commission(KM202011417010)。
关键词
整体解
存在性
一致有界性
global solution
existence
boundednesss