期刊文献+

基于动态多任务学习的科技文献推荐模型构建及实证研究

Construction and Empirical Study of Scientific and Technological Literature Recommendation Model Based on Dynamic Multi-task Learning
原文传递
导出
摘要 [目的/意义]为实现科技文献推荐场景要素的交互增强,将各要素交互特性捕捉问题转化为多任务共同优化学习问题,构建基于动态多任务学习的科技文献推荐模型,以进一步提升科技文献推荐性能。[方法/过程]采用多任务学习方法,针对科技文献推荐要素可采集的关键特征进行子任务解构,借助多头注意力机制,进行子任务交互关系的动态学习,在动态学习各任务交互关系的基础上设计科技文献推荐模型。[结果/结论]根据CiteULike数据实验结果,所构建的DMRSTL模型在3个评价指标上均显著优于对比模型,最高差值为AUC指标提升15.51%,MRR指标提升11.90%,nDCG@5指标提升16.45%,且通过任务组合对比实验进一步表明,借助推荐要素的交互增强,可以有效提升科技文献的推荐性能。 [Purpose/Significance]In order to enhance the interaction of scientific and technological literature recommendation scene elements and transform the problem of capturing the interactive characteristics of each element into a multi-task joint optimization learning problem,this paper constructs a scientific and technological literature recommendation model based on dynamic multi-task learning to further improve the performance of scientific and technological literature recommendation.[Method/Process]Based on multi-task learning method,the sub-tasks are deconstructed according to the key features collected from scientific and technological literature recommendation elements,and the multi-head attention mechanism was used to dynamically learn the interactive relationships of sub-tasks.A scientific and technological literature recommendation model was designed through dynamic learning of the interaction of each task.[Result/Conclusion]According to the experimental results of CiteULike data,the DMRSTL model constructed in this article is significantly better than the comparison model in three evaluation indicators.The highest difference is the increase of AUC indicator by 15.51%,MRR by 11.90%,and nDCG@5 indicator by 16.45%.The task combination comparative experiments further show that the interactive enhancement of recommendation elements can effectively improve the recommendation performance of scientific and technological literature.
作者 李洁 张国标 周毅 郗玉娟 杨金庆 Li Jie;Zhang Guobiao;Zhou Yi;Xi Yujuan;Yang Jinqing(Institute of Intelligent Society and Data Governance,Soochow University,Suzhou 215000;Shandong University Library,Jinan 250100;School of Communication,Soochow University,Suzhou 215000;School of Sociology,Soochow University,Suzhou 215000;School of Innovation and Entrepreneurship,Shandong University,Qingdao 266100;School of Information Management,Central China Normal University,Wuhan 430079)
出处 《图书情报工作》 北大核心 2024年第13期122-131,共10页 Library and Information Service
基金 江苏省社会科学青年基金项目“疫情常态化背景下图书馆数字资源认知推荐研究”(项目编号:21TQC001) 国家社会科学基金青年项目“模糊认知视角下智慧图书馆资源推荐服务模式及实证研究”(项目编号:22CTQ009) 湖北省自然科学基金面上项目“基于大语言模型深度语义理解的领域技术谱系生成研究”(项目编号:2024AFB1018)研究成果之一。
关键词 科技文献推荐 多任务学习 多头注意力机制 任务交互 scientific and technological literature recommendation multi-task learning multi-head attention mechanism task interaction
  • 相关文献

参考文献12

二级参考文献120

  • 1熊回香,李晓敏,李跃艳.基于图书评论属性挖掘的群组推荐研究[J].数据分析与知识发现,2020,4(2):214-222. 被引量:7
  • 2崔岩,祁伟,庞海龙,赵辉.融合协同过滤和XGBoost的推荐算法[J].计算机应用研究,2020,37(1):62-65. 被引量:11
  • 3吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 4邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 5MaS, LiX, DingY, etal. A recommender system with interest-drifting [M].Web Information Systems Engi- neering WISE 2007. Springer Berlin Heidelberg, 2007: 633-642.
  • 6MICHLMAYR E, GAYZER S.Leaming user profiles from tagging data and leveraging them for personal (ized) information access [C]//Proc of the 6th Interna- tional World Wide Web Conference.New York: ACM Press, 2007.
  • 7TSO-SUTTER K H L, MSRINHO L B, SCHMIDT-THIEME L S.Tag aware recommender systems by fusion of collaborative filtering rithms [C] //Pros of ACM Symposium on Applied Computing. New York: ACMPress, 2008: 95-99.
  • 8Liu Q, ChenE, Xiong H, et al. Enhancing collabo- rative filtering by user interest expansion via personalizedrankingiJ]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2012, 42 (1): 218-233.
  • 9CHENG Yuan, QIU Guang, BU Jia-jun, et al. Model bloggers'interests based on forgetting mechanism [C]//Pros of the 17th International Conference on World Wide Web. New York: ACM Press, 2008: 1129- 1130.
  • 10Shardanand U, Maes P.Social Information Filtering: Algorithms for Automating' wordofmouth' [C]. In Proc of the Con~on Human Factorsin Computing Systems, 2009.

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部